精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1各表面上的对角线中,与体对角线AC1垂直的面对角线共有
6
6
条.
分析:连接AC,则BD⊥AC.在正方体ABCD-A1B1C1D1中,由C1C⊥平面BCD,BD?平面BCD,知C1C⊥BD,由此能证明AC1⊥BD.同样地可以证明这样的直线共有 6条.
解答:证明:如图,连接AC,则BD⊥AC.
在正方体ABCD-A1B1C1D1中,
∵C1C⊥平面BCD,
BD?平面BCD,
∴C1C⊥BD,
又AC∩CC1=C,
∴BD⊥平面ACC1
∵AC1?平面ACC1
∴AC1⊥BD.
同样A1B,A1D,B1D1,B1D,C1D都与AC1垂直.
故答案为:6
点评:本题考查棱柱的结构特征,是中档题.解题时要认真审题,注意挖掘题设中的隐含条件,合理地化空间问题为平面问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E在底面ABCD内的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上结论正确的为
①③④
.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E为D′C′的中点,则二面角E-AB-C的大小为
45°
45°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E,F分别是AB′,BC′的中点. 
(1)若M为BB′的中点,证明:平面EMF∥平面ABCD.
(2)求异面直线EF与AD′所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在正方体ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H为垂足,则B1H与平面AD1C的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交棱AA′于E,交棱CC′于F,则:
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E有可能是菱形;
④四边形BFD′E有可能垂直于平面BB′D.
其中所有正确结论的序号是
 

查看答案和解析>>

同步练习册答案