精英家教网 > 高中数学 > 题目详情
下列通项公式表示的数列为等差数列的是(  )
A、an=
n
n+1
B、an=n2-1
C、an=5n+(-1)2
D、an=3n-1
分析:等差数列的通项是关于n的一次函数,在四个选项中找出所给的通项是关于n的一次函数即可,只有D是关n的一次函数.
解答:解:∵等差数列的通项是关于n的一次函数,
在四个选项中,只有D是关n的一次函数,
∴所给的四个通项中只有D表示等差数列,
故选D.
点评:本题考查等差数列的通项公式,本题解题的关键是看清题目在所给的四个选项的特点,除此之外还要注意数列的前n项和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

集合A1,A2,A3,…,An为集合M={1,2,3,…,n}的n个不同的子集,对于任意不大于n的正整数i,j满足下列条件:
①i∉Ai,且每一个Ai至少含有三个元素;
②i∈Aj的充要条件是j∉Aj(其中i≠j).
为了表示这些子集,作n行n列的数表(即n×n数表),规定第i行第j列数为:aij=
0   当i∉AJ
1        当i∈AJ时  

(1)该表中每一列至少有多少个1;若集合M={1,2,3,4,5,6,7},请完成下面7×7数表(填符合题意的一种即可);
(2)用含n的代数式表示n×n数表中1的个数f(n),并证明n≥7;
(3)设数列{an}前n项和为f(n),数列{cn}的通项公式为:cn=5an+1,证明不等式:
5cmn
-
cmcn
>1对任何正整数m,n都成立.(第1小题用表)
1 2 3 4 5 6 7
1 0
2 0
3 0
4 0
5 0
6 0
7 0

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中正确的是(    )

①数列若用图象表示,从图象上看都是一群孤立的点  ②任何数列都有通项公式  ③给定了数列的有限项,则可唯一确定这个数列的通项公式  ④数列的通项公式an是项数n的函数

A.①④             B.①③              C.③④             D.①③④

查看答案和解析>>

科目:高中数学 来源:2010年安徽省安庆一中高三第三次模拟考试数学(理)试题 题型:解答题

(本题满分 13分)
集合为集合个不同的子集,对于任意不大于的正整数满足下列条件:
,且每一个少含有三个元素;
的充要条件是(其中)。
为了表示这些子集,作列的数表(即数表),规定第行第列数为:
(1)该表中每一列至少有多少个1;若集合,请完成下面数表(填符合题意的一种即可);

(2)用含的代数式表示数表中1的个数,并证明
(3)设数列项和为,数列的通项公式为:,证明不等式:对任何正整数都成立。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

集合A1,A2,A3,…,An为集合M={1,2,3,…,n}的n个不同的子集,对于任意不大于n的正整数i,j满足下列条件:
①i∉Ai,且每一个Ai至少含有三个元素;
②i∈Aj的充要条件是j∉Aj(其中i≠j).
为了表示这些子集,作n行n列的数表(即n×n数表),规定第i行第j列数为:aij=数学公式
(1)该表中每一列至少有多少个1;若集合M={1,2,3,4,5,6,7},请完成下面7×7数表(填符合题意的一种即可);
(2)用含n的代数式表示n×n数表中1的个数f(n),并证明n≥7;
(3)设数列{an}前n项和为f(n),数列{cn}的通项公式为:cn=5an+1,证明不等式:数学公式-数学公式>1对任何正整数m,n都成立.(第1小题用表)
1234567
10
20
30
40
50
60
70

查看答案和解析>>

科目:高中数学 来源:2010年安徽省安庆一中高考数学三模试卷(理科)(解析版) 题型:解答题

集合A1,A2,A3,…,An为集合M={1,2,3,…,n}的n个不同的子集,对于任意不大于n的正整数i,j满足下列条件:
①i∉Ai,且每一个Ai至少含有三个元素;
②i∈Aj的充要条件是j∉Aj(其中i≠j).
为了表示这些子集,作n行n列的数表(即n×n数表),规定第i行第j列数为:aij=
(1)该表中每一列至少有多少个1;若集合M={1,2,3,4,5,6,7},请完成下面7×7数表(填符合题意的一种即可);
(2)用含n的代数式表示n×n数表中1的个数f(n),并证明n≥7;
(3)设数列{an}前n项和为f(n),数列{cn}的通项公式为:cn=5an+1,证明不等式:->1对任何正整数m,n都成立.(第1小题用表)
1234567
1
2
3
4
5
6
7

查看答案和解析>>

同步练习册答案