【题目】已知曲C的极坐标方程ρ=2sinθ,设直线L的参数方程
,(t为参数)设直线L与x轴的交点M,N是曲线C上一动点,求|MN|的最大值 .
科目:高中数学 来源: 题型:
【题目】已知在△ABC中,角A、B、C的对边分别为a、b、c,且满足cos2A﹣cos2B=2cos(
﹣A)cos(
+A).
(1)求角B的值;
(2)若b=
且b≤a,求2a﹣c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足:a1=
,an=an﹣12+an﹣1(n≥2且n∈N).
(Ⅰ)求a2 , a3;并证明:2
﹣
≤an≤
3
;
(Ⅱ)设数列{an2}的前n项和为An , 数列{
}的前n项和为Bn , 证明:
=
an+1 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(ax+1)ex﹣(a+1)x﹣1.
(1)求y=f(x)在(0,f(0))处的切线方程;
(2)若x>0时,不等式f(x)>0恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-5:不等式选讲]
设函数f(x)=|x﹣4|,g(x)=|2x+1|.
(1)解不等式f(x)<g(x);
(2)若2f(x)+g(x)>ax对任意的实数x恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知等边
中,
,
分别为
,
边的中点,
为
的中点,
为
边上一点,且
,将
沿
折到
的位置,使平面
平面
.
![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知长方体ABCD-A1B1C1D1中,底面ABCD为正方形,AB=4,AA1=2,点E1在棱C1D1上,且D1E1=3。
![]()
(I)在棱CD上确定一点E,使得直线EE1∥平面D1DB,并写出证明过程;
(II)求证:平面A1ACC1⊥平面D1DB;
(III)若动点F在正方形ABCD内,且AF=2,请说明点F的轨迹,试求E1F长度的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB∥DC,DA⊥AB,AB=AP=2,DA=DC=1,E为PC上一点,且PE=
PC.![]()
(Ⅰ)求PE的长;
(Ⅱ)求证:AE⊥平面PBC;
(Ⅲ)求二面角B﹣AE﹣D的度数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对边分别是a,b,c,若sin(A﹣B)=
sinAcosB﹣
sinBcosA.
(1)求证:A=B;
(2)若A=
,a=
,求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com