精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax-
b
x
-2lnx,f(1)=0若函数f(x)的图象在x=1处的切线的斜率为0,且an+1=f′(
1
an+1
)-nan+1,若a1≥3,求证:an≥n+2
分析:先利用导数的几何意义求出数列的递推公式,再证之.
解答:解:x>0,f(1)=a-b=0,∴a=b,f(x)=a+
a
x2
-
2
x

∵函数f(x)的图象在x=1处的切线的斜率为0,
∴f(1)=0,即a+a-2=0,解得 a=1
∴f(x)=(
1
x
-1)
2
,an+1=an2-nan+1
下面用数学归纳法证明:
(Ⅰ) 当n=1,a1≥3=1+2,不等式成立;
(Ⅱ)假设当n=k时,不等式成立,即:ak≥k+2,
ak-k≥2>0,
∴ak+1=ak(ak-k )+1≥2(k+2)+1=( k+3)+k+2>k+3
也就是说,当n=k+1时,ak+1≥(k+1)+2成立
根据(Ⅰ)(Ⅱ)对于所有n≥1,都有an≥n+2成立
点评:本题主要考查数学归纳法,在证明ak+1≥(k+1)+2成立时,要明确要证的目标,应用假设的结论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案