已知函数![]()
.
(1)当
时,求函数
的单调区间;
(2)若
时,函数
在闭区间
上的最大值为
,求
的取值范围.
(1)单调增区间分别为
,
,单调减区间为
;(2)
.
解析试题分析:本题主要考查导数的运算,利用导数研究函数的单调性、极值、最值以及不等式的基础知识,考查分类讨论思想,考查综合运用数学知识和方法分析问题解决问题的能力和计算能力.第一问,当
科目:高中数学
来源:
题型:解答题
设函数
科目:高中数学
来源:
题型:解答题
已知函数
科目:高中数学
来源:
题型:解答题
(本小题13分) 已知函数
科目:高中数学
来源:
题型:解答题
已知函数
科目:高中数学
来源:
题型:解答题
已知函数
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
时,函数解析式中没有参数,直接求导,令导数大于0和小于0,分别解出函数的单调增区间和单调减区间;第二问,因为
的两个根是
和1,所以需要讨论
和1的大小,分3种情况进行讨论,分别列表判断函数的单调性、极值、最值,求出函数在闭区间
上的最大值判断是否等于
,求出
的取值范围.
试题解析:
2分
(1)当
时,![]()
当
或
时,
,
当
,
,
所以
的单调增区间分别为
,
, 5分
的单调减区间为
.
(2)(Ⅰ)当
时,
,
在
上单调递增,最大值为![]()
(Ⅱ)当
时,列表如下:x 0 (0,a) a (a,1) 1 (1,1+a) a+1 f/(x) + 0 - 0 + f(x) 增 极大值f(a) ![]()
![]()
三点一测课堂作业本系列答案
天梯学案初中同步新课堂系列答案
高考核心假期作业寒假中国原子能出版传媒有限公司系列答案
暑假作业湖南使用湖北教育出版社系列答案
常青藤英语词汇专练系列答案
新鑫文化过好假期每一天暑假团结出版社系列答案
精编名师点拨课时作业甘肃教育出版社系列答案
口算题卡心算口算速算巧算系列答案
立体设计暑假初升高衔接版系列答案
培优新帮手暑假初升高衔接教程系列答案
,曲线
通过点(0,2a+3),且在
处的切线垂直于y轴.
(I)用a分别表示b和c;
(II)当bc取得最大值时,写出
的解析式;
(III)在(II)的条件下,g(x)满足
,求g(x)的最大值及相应x值.
(其中
,e是自然对数的底数).
(Ⅰ)若
,试判断函数
在区间
上的单调性;
(Ⅱ)若函数
有两个极值点
,
(
),求k的取值范围;
(Ⅲ)在(Ⅱ)的条件下,试证明
.
(
为自然对数的底数)。
(1)若
,求函数
的单调区间;
(2)是否存在实数
,使函数
在
上是单调增函数?若存在,求出
的值;若不存在,请说明理由。恒成立,则![]()
,又
,![]()
.
(I) 当
,求
的最小值;
(II) 若函数
在区间
上为增函数,求实数
的取值范围;
(III)过点
恰好能作函数
图象的两条切线,并且两切线的倾斜角互补,求实数
的取值范围.
的图象在与
轴交点处的切线方程是
.
(I)求函数
的解析式;
(II)设函数
,若
的极值存在,求实数
的取值范围以及函数
取得极值时对应的自变量
的值.
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号