【题目】已知函数
,曲线
在点
处的切线与直线
垂直(其中
为自然对数的底数).
(1)求
的解析式及单调递减区间;
(2)是否存在常数
,使得对于定义域内的任意
,
恒成立?若存在,求出
的值;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知某企业原有员工1000人,每人每年可为企业创利润15万元,为应对国际金融危机给企业带来的不利影响,该企业实施“优化重组,分流增效”的策略,分流出一部分员工待岗.为维护生产稳定,该企业决定待岗人数不超过原有员工的2%,并且每年给每位待岗员工发放生活补贴1万元.据评估,当待岗员工人数
不超过原有员工1.4%时,留岗员工每人每年可为企业多创利润
万元;当待岗员工人数
超过原有员工1.4%时,留岗员工每人每年可为企业多创利润1.8万元.
(1)求企业年利润
(万元)关于待岗员工人数
的函数关系式
;
(2)为使企业年利润最大,应安排多少员工待岗?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.则事件“抽到的是二等品或三等品”的概率为( )
A. 0.7 B. 0.65
C. 0.35 D. 0.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆心坐标为(
,1)的圆M与x轴及直线y=
x分别相切于A,B两点,另一圆N与圆M外切、且与x轴及直线y=
x分别相切于C、D两点.
![]()
(1)求圆M和圆N的方程;
(2)过点B作直线MN的平行线l,求直线l被圆N截得的弦的长度
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC
A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点.
![]()
(Ⅰ)证明:平面AEF⊥平面B1BCC1;
(Ⅱ)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F
AEC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】销售甲、乙两种商品所得利润分别是
万元,它们与投入资金
万元的关系分别为
(其中
都为常数),函数
对应的曲线
如图所示.
![]()
(1)求函数
的解析式;
(2)若该商场一共投资8万元经销甲、乙两种商品,求该商场所获利润的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知以点
为圆心的圆过原点
.
(1)设直线
与圆
交于点
,若
,求圆
的方程;
(2)在(1)的条件下,设
,且
分别是直线
和圆
上的动点,求
的最大值及此时点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<
)在某一个周期内的图象时,列表并填入了部分数据,如表:
![]()
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式.
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为
,求θ的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com