精英家教网 > 高中数学 > 题目详情
已知在二阶矩阵M对应变换的作用下,四边形ABCD变成四边形A′B′C′D′,其中A(1,1),B(-1,1),C(-1,-1),A′(3,-3),B′(1,1),D′(-1,-1).
(1)求出矩阵M;
(2)确定点D及点C′的坐标.
【答案】分析:(1)先设出矩阵M,利用待定系数法建立四个等式关系,解四元一次方程组即可;
(2)利用矩阵变换的定义建立等量关系即可求出C′,利用矩阵M的逆矩阵求出D点坐标即可.
解答:解:(1)设M=,则有==
解得a=1,b=2,c=-2,d=-1,∴M=.(5分)
(2)由=知,C′(-3,3),
=知,D(1,-1).(10分)
点评:本题主要考查了二阶矩阵的对应变换,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在二阶矩阵M对应变换的作用下,四边形ABCD变成四边形A′B′C′D′,其中A(1,1),B(-1,1),C(-1,-1),A′(3,-3),B′(1,1),D′(-1,-1).
(1)求出矩阵M;
(2)确定点D及点C′的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网(Ⅰ)如图,正方形OABC在二阶矩阵M对应的切变变换作用下变为平行四边形OA′B′C′,平行四边形OA'B'C'在二阶矩阵N对应的旋转变换作用下变为平行四边形OA''B''C'',求将正方形OABC变为平行四边形OA''B''C''的变换对应的矩阵.
(Ⅱ)在直角坐标系xOy中,圆O的参数方程为
x=-
2
2
+rcosθ
y=-
2
2
+rsinθ
(θ为参数,r>0).以O为极点,x轴正半轴为极轴,并取相同的单位长度建立极坐标系,直线l的极坐标方程为ρsin(θ+
π
4
)=
2
2
.写出圆心的极标,并求当r为何值时,圆O上的点到直线l的最大距离为3.
(Ⅲ)已知a2+2b2+3c2=6,若存在实数a,b,c,使得不等式a+2b+3c>|x+1|成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省苏北四市高三(上)第一次摸底数学试卷(解析版) 题型:解答题

已知在二阶矩阵M对应变换的作用下,四边形ABCD变成四边形A′B′C′D′,其中A(1,1),B(-1,1),C(-1,-1),A′(3,-3),B′(1,1),D′(-1,-1).
(1)求出矩阵M;
(2)确定点D及点C′的坐标.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省南通市如东县栟茶高级中学高考数学一模试卷(解析版) 题型:解答题

已知在二阶矩阵M对应变换的作用下,四边形ABCD变成四边形A′B′C′D′,其中A(1,1),B(-1,1),C(-1,-1),A′(3,-3),B′(1,1),D′(-1,-1).
(1)求出矩阵M;
(2)确定点D及点C′的坐标.

查看答案和解析>>

同步练习册答案