(本小题满分12分)双曲线
的离心率为2,坐标原点到
直线AB的距离为
,其中A
,B
.
(1)求双曲线的方程;
(2)若
是双曲线虚轴在
轴正半轴上的端点,过
作直线与双曲线交于
两点,求
时,直线
的方程.
科目:高中数学 来源: 题型:解答题
(本题满分12分)
已知中心在原点O,焦点在x轴上的椭圆E过点(1,
),离心率为
.
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线x+y+1=0与椭圆E相交于A、B(B在A上方)两点,问是否存在直线l,使l与椭圆相交于C、D(C在D上方)两点且ABCD为平行四边形,若存在,求直线l的方程与平行四边形ABCD的面积;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
( 本小题满分12分)如图所示,已知圆
为圆上一动点,点
在
上,点
在
上,且满足
的轨迹为曲线
。![]()
求曲线
的方程;
若过定点F(0,2)的直线交曲线
于不同的两点
(点
在点
之间),且满足
,求
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
已知椭圆C:
的上顶点坐标为
,离心率为
.
(Ⅰ)求椭圆方程;
(Ⅱ)设P为椭圆上一点,A为左顶点,F为椭圆的右焦点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)已知过点
的动直线
与抛物线
相交于
两点,当直线
的斜率是
时,
。
(1)求抛物线
的方程;(5分)
(2)设线段
的中垂线在
轴上的截距为
,求
的取值范围。(7分)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)双曲线C与椭圆
有相同的焦点,直线y=
为
的一条渐近线.
(Ⅰ)求双曲线
的方程;
(Ⅱ)过点
(0,4)的直线
,交双曲线
于A,B两点,交x轴于
点(
点与
的顶点不重合)。当
=![]()
,且
时,求
点的坐标
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆中心在原点,焦点在
轴上,椭圆短轴的端点和焦点组成的四边形为正方形,且
.
(1)求椭圆方程;
(2)直线
过点
,且与椭圆相交于
、
不同的两点,当
面积取得最大值时,求直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com