精英家教网 > 高中数学 > 题目详情
11.一个几何体的正视图、侧视图和俯视图如图所示,若这个几何体的外接球的表面积为100π,则该几何体的体积为(  )
A.$36\sqrt{3}$B.$\frac{98}{3}$C.$\frac{116}{3}$D.$\frac{128}{3}$

分析 几何体是三棱锥,根据三视图知几何体的后侧面与底面垂直,高为2m,结合直观图判定外接球的球心在后侧面的高SO上,利用球心到A、S的距离相等求得半径,代入球的表面积公式计算

解答 解:由三视图知:几何体是三棱锥,如图,且几何体的后侧面SAC与底面垂直,高SO为2m,

其中OA=OB=OC=m,SO⊥平面ABC,
其外接球的球心在SO上,因为这个几何体的外接球的表面积为100π=4π×R2,解得R=5=SM,
设球心为M,OM=x,
则$\sqrt{{x}^{2}+{m}^{2}}$=5=2m-x,⇒m=4,x=3,
所以几何体S-ABC的体积为$\frac{1}{3}×\frac{1}{2}×8×4×8=\frac{128}{3}$;
故选D.

点评 本题考查三视图复原几何体形状的判断,几何体的表面积与体积的求法,考查空间想象能力与计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.平面直角坐标系中,已知点A(1,-2),B(4,0),P(a,1),N(a+1,1),当四边形PABN的周长最小时,过三点A,P,N的圆的圆心坐标是(  )
A.(3,-$\frac{9}{8}$)B.(3,-$\frac{7}{8}$)C.(5,-$\frac{9}{8}$)D.(4,-$\frac{5}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=|x+3|-|x-a|.
(Ⅰ)若a=2,求不等式f(x)≤0的解集;
(Ⅱ)若f(x)>2的解集为{x|x>5},求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}的前n项和记为Sn,${S_n}=\frac{1}{3}({a_n}-1)(n∈{N^*})$,则an=(  )
A.${(-\frac{1}{2})^n}$B.$-\frac{1}{2^n}$C.$-{(-\frac{1}{2})^n}$D.$-{(\frac{1}{2})^{n-1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图是某几何体的三视图,图中小方格单位长度为1,则该几何体外接球的表面积为(  )
A.B.12πC.16πD.24π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知模为2的向量$\overrightarrow a$与单位向量$\overrightarrow b$的夹角为$\frac{2π}{3}$,则$(2\overrightarrow a-\overrightarrow b)•(\overrightarrow a+\overrightarrow b)$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.计算:${(4-\frac{5}{8})^{-\frac{1}{3}}}×{(-\frac{7}{6})^0}+{(\frac{1}{3})^{{{log}_3}^{\frac{1}{2}}}}+\frac{1}{2}$lg25+lg2=$\frac{11}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个三棱锥的三视图如图所示,则该几何体的体积为(  )
A.1B.$\frac{4\sqrt{3}}{3}$C.$\frac{8\sqrt{3}}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)在R上可导,f(x)=2xf'(e)+lnx,则f'(e)=(  )
A.1B.-1C.$-\frac{1}{e}$D.-e

查看答案和解析>>

同步练习册答案