精英家教网 > 高中数学 > 题目详情

【题目】某校将一次测试中高三年级学生的数学成绩统计如下表所示,在参加测试的学生中任取1人,其成绩不低于120分的概率为.

分数

频数

40

50

70

60

80

50

1)求的值;

2)若按照分层抽样的方法从成绩在的学生中抽取6人,再从这6人中随机抽取2人进行错题分析,求这2人中至少有1人的分数在的概率.

【答案】(1);(2)

【解析】

1)根据频率的概念,可得结果.

2)根据分层抽样的方法,得到成绩在分别抽出的人数,并对这些学生分别进行标记,然后利用列举法,结合古典概型的概念,可得结果.

1)依题意:,解得.

2)依题意:

成绩在的学生抽取2人,记为

成绩在的学生抽取4人,记为

则任取2人,所有的情况为

,共15种,

其中满足条件的为

,共9种,

故所求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓后要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现三次音乐获得150分,出现两次音乐获得100分,出现一次音乐获得50分,没有出现音乐则获得-300.设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.

1)若一盘游戏中仅出现一次音乐的概率为,求的最大值点

2)以(1)中确定的作为的值,玩3盘游戏,出现音乐的盘数为随机变量,求每盘游戏出现音乐的概率,及随机变量的期望

3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车是碳排放量比较大的行业之一,欧盟规定,从2015年开始,将对排放量超过130g/km型新车进行惩罚(视为排放量超标),某检测单位对甲、乙两类型品牌抽取5辆进行排放量检测,记录如下(单位:g/km):

80

110

120

140

150

100

120

x

y

160

经测算发现,乙品牌车排放量的平均值为.

)从被检测的5辆甲类品牌中任取2辆,则至少有一辆排放量超标的概率是多少?

)若乙类品牌的车比甲类品牌的的排放量的稳定性要好,求x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次数学知识比赛中共有6个不同的题目,每位同学从中随机抽取3个题目进行作答,已知这6个题目中,甲只能正确作答其中的4个,而乙正确作答每个题目的概率均为,且甲、乙两位同学对每个题目的作答都是相互独立、互不影响的.

1)求甲、乙两位同学总共正确作答3个题目的概率;

2)若甲、乙两位同学答对题目个数分别是,由于甲所在班级少一名学生参赛,故甲答对一题得15分,乙答对一题得10分,求甲乙两人得分之和的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:当时,

2)若时不等式成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有橡皮泥制作的底面半径为5,高为9的圆锥和底面半径为,高为8的圆柱各一个.若将它们重新制作成总体积与各自的高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为_________;若新圆锥的内接正三棱柱表面积取到最大值,则此正三棱柱的底面边长为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是一个三棱锥,是圆的直径,是圆上的点,垂直圆所在的平面,分别是棱的中点.

1)求证:平面

2)若二面角,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点满足方程.

1)求点M的轨迹C的方程;

2)作曲线C关于轴对称的曲线,记为,在曲线C上任取一点,过点P作曲线C的切线l,若切线l与曲线交于AB两点,过点AB分别作曲线的切线,证明的交点必在曲线C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线为参数),将曲线上的所有点的横坐标保持不变,纵坐标缩短为原来的后得到曲线;以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

1)求曲线和直线的直角坐标方程;

2)已知,设直线与曲线交于不同的两点,求的值.

查看答案和解析>>

同步练习册答案