在平面直角坐标系
中,已知动点
到点
的距离为
,到
轴的距离为
,且
.
(1)求点
的轨迹
的方程;
(2) 若直线
斜率为1且过点
,其与轨迹
交于点
,求
的值.
科目:高中数学 来源: 题型:解答题
已知抛物线的方程为
,直线
的方程为
,点
关于直线
的对称点在抛物线上.
(1)求抛物线的方程;
(2)已知
,求过点
及抛物线与
轴两个交点的圆的方程;
(3)已知
,点
是抛物线的焦点,
是抛物线上的动点,求
的最小值及此时点
的坐标;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2013•浙江)已知抛物线C的顶点为O(0,0),焦点F(0,1)
(Ⅰ)求抛物线C的方程;
(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
长方形
中,
,
.以
的中点
为坐标原点,建立如图所示的直角坐标系.![]()
(1) 求以
、
为焦点,且过
、
两点的椭圆的标准方程;
(2) 过点
的直线
交(1)中椭圆于
两点,是否存在直线
,使得以线段
为直径的圆恰好过坐标原点?若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆
.称圆心在原点O,半径为
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为
,其短轴上的一个端点到F的距离为
.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线
,使得
与椭圆C都只有一个交点,试判断
是否垂直?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,如图,已知椭圆E:
的左、右顶点分别为
、
,上、下顶点分别为
、
.设直线
的倾斜角的正弦值为
,圆
与以线段
为直径的圆关于直线
对称.![]()
(1)求椭圆E的离心率;
(2)判断直线
与圆
的位置关系,并说明理由;
(3)若圆
的面积为
,求圆
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率
,且直线
是抛物线
的一条切线.
(1)求椭圆的方程;
(2)点P
为椭圆上一点,直线
,判断l与椭圆的位置关系并给出理由;
(3)过椭圆上一点P作椭圆的切线交直线
于点A,试判断线段AP为直径的圆是否恒过定点,若是,求出定点坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
的左、右焦点分别为
,离心率
,连接椭圆的四个顶点所得四边形的面积为
.
(1)求椭圆C的标准方程;
(2)设
是直线
上的不同两点,若
,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com