精英家教网 > 高中数学 > 题目详情

是否存在实数λ,使函数f(x)=x4+(2-λ)x2+2-λ在区间(-∞,-2]上是减函数,而在区间[-1,0)上是增函数?若存在,求出λ的取值范围;若不存在,请说明理由.

答案:
解析:

  分析:已知函数在规定区间上的单调性,运用定义可得出λ与所设的x1、x2的不等关系式,再根据变量x1、x2的两个范围,求出λ的范围,由两个已知条件求出λ的两个范围,若有公共部分则λ存在,若无公共部分,则λ不存在.

  解:因为f(x1)-f(x2)=x14-x24+(2-λ)(x12-x22)=(x12-x22)(x12+x22+2-λ)

  若x1<x2≤-2,则x12-x22>0,且x12+x22+2>4+4+2=10,所以当且仅当λ≤10时,f(x1)-f(x2)>0恒成立,从而f(x)在区间(-∞,-2]上是减函数.

  若-1≤x1<x2<0,则x12-x22>0,且x12+x22+2<1+1+2=4,所以当且仅当λ≥4时,f(x1)-f(x2)<0恒成立,从而f(x)在区间[-1,0)上是增函数.

  综上所述,存在实数λ使f(x)在区间(-∞,-2]上是减函数,而在区间[-1,0)上是增函数,且实数λ的取值范围为[4,10].

  点评:本题是一道探索性命题,是一道求函数单调性的逆向问题,定义是解决此类问题的最佳方法.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出函数封闭的定义:若对于定义域D内的任一个自变量x0,都有函数值f(x0)∈D,则称函数y=f(x)在D上封闭.
(1)若定义域D1=(0,1),判断下列函数中哪些在D1上封闭,且给出推理过程f1(x)=2x-1,f2(x)=-
1
2
x2-
1
2
x+1
,f3(x)=2x-1,f4(x)=cosx.;
(2)若定义域D2=(1,2),是否存在实数a使函数f(x)=
5x-a
x+2
在D2上封闭,若存在,求出a的值,并给出证明,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x).当x<0时,f(x)=x2+2x.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)问:是否存在实数a,b(a≠b),使f(x)在x∈[a,b]时,函数值的集合为[
1
b
1
a
]
?若存在,求出a,b;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

当1<x<2时,是否存在实数a使y=x2-3(a+1)x+2(3a+1)的函数值小于0恒成立,若存在,则a的范围是____________.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省高二下学期期末考试数学文 题型:解答题

(本小题满分16分:8+8)

给出函数封闭的定义:若对于定义域D内的任一个自变量,都有函数值,则称函数y=f(x)在 D上封闭。

(1)若定义域判断下列函数中哪些在上封闭,并给出推理过程;

    

(2)若定义域是否存在实数,使函数上封闭,若存在,求出值,若不存在,请说明理由。

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

给出函数封闭的定义:若对于定义域D内的任一个自变量x0,都有函数值f(x0)∈D,则称函数y=f(x)在D上封闭.
(1)若定义域D1=(0,1),判断下列函数中哪些在D1上封闭,且给出推理过程f1(x)=2x-1,f2(x)=-
1
2
x2-
1
2
x+1
,f3(x)=2x-1,f4(x)=cosx.;
(2)若定义域D2=(1,2),是否存在实数a使函数f(x)=
5x-a
x+2
在D2上封闭,若存在,求出a的值,并给出证明,若不存在,说明理由.

查看答案和解析>>

同步练习册答案