精英家教网 > 高中数学 > 题目详情
(2010•重庆一模)已知数列{an}的前n项和Sn满足Sn=2n-1,则当n≥2时,
1
a1
+
1
a2
+…+
1
an
=
2-(
1
2
)n-1
2-(
1
2
)n-1
分析:先根据an=
sn-sn-1n≥2
s1n=1
求出{an}的通项,再求出{
1
an
}的通项,代入等比数列的求和公式即可.
解答:解:∵Sn=2n-1,所以当n≥2时,an=Sn-sn-1=2n-1
又因为a1=s1=1适合上式,所以an=2n-1,故
1
an
=(
1
2
n-1
即{
1
an
}是以1为首项,
1
2
为公比的等比数列,
代入等比数列的求和公式可得其和为:2-(
1
2
)n-1

故答案为:2-(
1
2
)n-1
点评:本题主要考查了数列的通项公式,以及等比数列的求和,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•重庆一模)已知x,y∈R,则“x•y=0”是“x=0”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆一模)抛物线y=2x2的交点坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆一模)已知直线l1的方程为3x+4y-7=0,直线l2的方程为6x+8y+1=0,则直线l1与l2的距离为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆一模)设集合A={(x,y)|x2+y2≤1},集合B={(x,y)|log|x||y|≤log|y||x|,|x|<1,|y|<1},则在直角坐标平面内,A∩B所表示的平面区域的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆一模)设函数f(x)=-x2+2ax+m,g(x)=
ax

(I)若函数f(x),g(x)在[1,2]上都是减函数,求实数a的取值范围;
(II)当a=1时,设函数h(x)=f(x)g(x),若h(x)在(0,+∞)内的最大值为-4,求实数m的值.

查看答案和解析>>

同步练习册答案