精英家教网 > 高中数学 > 题目详情

如图,在长方体ABCD-A1B1C1D1中,底面ABCD是边长为的正方形,AA1,E、F分别是AB1、CB1的中点,求证:平面D1EF⊥平面AB1C

答案:
解析:

  证明:如图,设AC∩BD=O,连结B1O,交EF于点M.

  ∵AE=EB1,CF=FB1

  ∴EFAC,且M为OB1的中点.

  又∵AB1=CB1,O是AC的中点,

  ∴B1O⊥AC.

  ∵EF∥AC,∴B1O⊥EF.

  在Rt△B1OB中,

  B1O=

  ∴B1M=B1O=1.

  ∵四边形D1DBB1为平行四边形,D1B1∥DB,

  ∴∠D1B1O=∠BOB1

  ∵B1D1=2=B1O,B1M=OB=1,且∠D1B1M=∠BOB1,∴△D1B1M≌△B1OB

  ∴∠D1MB1=∠B1BO.

  ∵∠B1BO=90°,

  ∴∠D1MB1=90°.

  ∴B1M⊥D1M,即B1O⊥D1M.

  ∵B1O⊥EF,D1M∩EF=M,

  ∴B1O⊥平面D1EF.

  ∵B1O平面AB1C,

  ∴平面D1EF⊥平面AB1C

  思路分析:此题中B1O⊥EF较易得到,而证B1O⊥D1M则通过了较复杂数据的关系及三角形知识才能完成.平时做题经常会遇到此类情况


提示:

要证两平面垂直,最常用的办法是证一个平面内的一条直线垂直于另一平面,而线垂直面的证明关键在于找到面内有两条相交直线垂直已知直线.要善于运用题目给出的信息,通过计算挖掘题目的垂直与平行关系,这是一种非常重要的思想方法,它可以使复杂问题简单化.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图在长方体ABCD-A1B1C1D1中,三棱锥A1-ABC的面是直角三角形的个数为:
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,定义八个顶点都在某圆柱的底面圆周上的长方体叫做圆柱的内接长方体,圆柱也叫长方体的外接圆柱.设长方体ABCD-A1B1C1D1的长、宽、高分别为a,b,c(其中a>b>c),那么该长方体的外接圆柱侧面积的最大值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个n面体中有m个面是直角三角形,则称这个n面体的直度为.如图,在长方体ABCD-A1B1C1D1中,四面体A1-ABC的直度为(    )

 

A.         B.               C.                 D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个n面体中有m个面是直角三角形,则称这个n面体的直度为.如图,在长方体ABCD-A1B1C1D1中,四面体A1-ABC的直度为(    )

 

A.            B.              C.              D.1

查看答案和解析>>

科目:高中数学 来源:2010-2011年四川省成都市高二3月月考数学试卷 题型:填空题

(文科做)(本题满分14分)如图,在长方体

ABCDA1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.

(1)证明:D1EA1D;

(2)当EAB的中点时,求点E到面ACD1的距离;

(3)AE等于何值时,二面角D1ECD的大小为.                      

 

 

 

(理科做)(本题满分14分)

     如图,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,

CA =AA1 =M为侧棱CC1上一点,AMBA1

   (Ⅰ)求证:AM⊥平面A1BC

   (Ⅱ)求二面角BAMC的大小;

   (Ⅲ)求点C到平面ABM的距离.

 

 

 

 

 

查看答案和解析>>

同步练习册答案