精英家教网 > 高中数学 > 题目详情
精英家教网在四棱锥S-ABCD中,底面ABCD为矩形,SA⊥平面ABCD,SA=AD,M为AB的中点,N为SC的中点.
(1)求证:MN∥平面SAD; 
(2)求证:平面SMC⊥平面SCD;
(3)记
CDAD
,求实数λ的值,使得直线SM与平面SCD所成的角为30°.
分析:(1)取SD中点E,连接AE,NE,由三角形中位线定理,及M为AB中点,可证明四边形AMNE为平行四边形,则MN∥AE,由线面平行的判定定理即可得到MN∥平面SAD;
(2)由已知中SA⊥平面ABCD,底面ABCD为矩形可得,SA⊥CD,AD⊥CD,由线面垂直的判定定理可得CD⊥平面SAD,则∠SDA即为二面角S-CD-A的平面角,结合已知中二面角S-CD-A的平面角为45°,可得△SAD为等腰直角三角形,则AE⊥SD,结合CD⊥AE及线面垂直的判定定理,可得AE⊥平面SCD,则MN⊥平面SCD,最终由面面垂直的判定定理可得平面SMC⊥平面SCD
(3)若 
CD
AD
=λ,设AD=SA=a,则CD=λa,结合(2)的结论,可得∠MSN即为直线SM与平面SCD所成角,等于30°,解三角形SAM,即可求出λ值.
解答:精英家教网证明:(1)取SD中点E,连接AE,NE,
则NE=
1
2
CD=AM,NE∥CD∥AM,
∴四边形AMNE为平行四边形,∴MN∥AE…(1分)
又∵MN?平面SAD,AE?平面SAD,
∴MN∥平面SAD…(3分)
(2)∵SA⊥平面ABCD,∴SA⊥CD,∵底面ABCD为矩形,∴AD⊥CD,
又∵SA∩AD=A,SA?平面SAD,AD?平面SAD,
∴CD⊥平面SAD,∴CD⊥SD
∴∠SDA即为二面角S-CD-A的平面角,
即∠SDA=45°…(5分)
∴△SAD为等腰直角三角形,∴AE⊥SD
∵CD⊥平面SAD,∴CD⊥AE,
又SD∩CD=D,SD?平面SCD,CD?平面SCD
∴AE⊥平面SCD∵MN∥AE,∴MN⊥平面SCD,
∵MN?平面SMC,
∴平面SMC⊥平面SCD…(8分)
(3)∵
CD
AD
=λ,设AD=SA=a,则CD=λa
由(2)可得MN⊥平面SCD,∴SN即为SM在平面SCD内的射影
∴∠MSN即为直线SM与平面SCD所成角,
即∠MSN=30°…(9分)
而MN=AE=
2
2
a

∴Rt△SAM中,SM=
a2+(λa)2
,而MN=AE=
2
2
a,
∴Rt△SAM中,由sin∠MSN=
MN
SN

1
2
=
2
2
a
a2+(λa)2
,解得λ=2
当λ=2时,直线SM与平面SCD所成角为30°(14分)
点评:本题考查的知识点是平面与平面垂直的判定,直线与平面平行的判定,直线与平面所成的角,其中熟练掌握空间直线与平面平行、垂直、夹角的定义、判定、性质是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E为BS的中点,CE=
2
,AS=
3
,求:
(Ⅰ)点A到平面BCS的距离;
(Ⅱ)二面角E-CD-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,底面ABCD是边长为2的正方形,侧棱SD=2,SA=2
2
,∠SDC=120°.
(1)求证:侧面SDC⊥底面ABCD;
(2)求侧棱SB与底面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,SD⊥底面ABCD,底面ABCD是平行四边形,∠BAD=30°,AB=2,AD=
3
,E是SC的中点.
(Ⅰ)求证:SA∥平面BDE;
(Ⅱ)求证:AD⊥SB;
(Ⅲ)若SD=2,求棱锥C-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥S-ABCD中,BA⊥面SAD,CD⊥面SAD,SA⊥SD,且SA=SD=DC=2AB.O为AD中点.
(1)求证:SO⊥BC;
(2)求直线SO与面SBC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,SA⊥底面ABCD,∠BAD=∠ABC=90°,BC=3SA=3AB=3AD.
(1)求CD和SB所成角大小;
(2)已知点G在BC边上,①若G点与B点重合,求二面角S-DB-A的大小;
②若BG:GC=2:1,求二面角S-DG-A的大小.

查看答案和解析>>

同步练习册答案