精英家教网 > 高中数学 > 题目详情
若△ABC三边成等差数列,则B的范围是
 
;若△ABC三边成等比数列,则B的范围是
 
分析:设出三角形的三边分别为a,b,c,由三边成等差数列,利用等差数列的性质可知2b等于a+c,利用余弦定理表示出cosB,然后把b等于a+c的一半代入,利用基本不等式即可求出cosB的最小值,根据B的范围及余弦函数在此区间为减函数即可得到B的范围;当三边成等比数列时,利用等比数列的性质得到b的平方等于ac的积,同理利用余弦定理表示出cosB,把求出的关系式代入后,利用基本不等式即可得到cosB的最小值,根据B的范围,且根据余弦函数在此范围为减函数,即可得到B的范围.
解答:解:设三角形的三边分别为a,b,c,
由三边成等差数列可知:b=
a+c
2

由余弦定理得:cosB=
a2+c2-b2
2ac
=
a2+c2-(
a+c
2
)
2
2ac
=
3(a2+c2)-2ac 
8ac
6ac-2ac
8ac
=
1
2

当且仅当a=c时取等号,
又B∈(0,π),且余弦函数在此区间为减函数,所以B∈(0,
π
3
];
由三边成等比数列可知:b2=ac,
由余弦定理得:cosB=
a2+c2-b2
2ac
=
a2+c2-ac
2ac
2ac-ac
2ac
=
1
2

同理可得B∈(0,
π
3
].
故答案为:(0,
π
3
];(0,
π
3
].
点评:此题考查学生灵活运用余弦定理化简求值,掌握余弦函数的图象与性质,灵活运用基本不等式求函数的最大值,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在三角形ABC中,若其三内角度数成等差,其对应三边长成等比,则此三角形为
等边
等边
三角形.(要求精确作答)

查看答案和解析>>

科目:高中数学 来源:浙江省瑞安市安阳高级中学2010-2011学年高二下学期第一次月考数学文科试题 题型:022

在三角形ABC中,若其三内角度数成等差,其对应三边长成等比,则此三角形为________三角形.(要求精确作答)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省温州市瑞安市安阳高中高二(下)第一次月考数学试卷(文科)(解析版) 题型:填空题

在三角形ABC中,若其三内角度数成等差,其对应三边长成等比,则此三角形为    三角形.(要求精确作答)

查看答案和解析>>

同步练习册答案