精英家教网 > 高中数学 > 题目详情
(2012•江西模拟)关于x的方程x3-3x2-a=0有3个不同的实数解,则a的取值范围是
(-4,0)
(-4,0)
分析:关于x的方程x3-3x2-a=0有3个不同的实数解?函数y=x3-3x2与y=a由三个不同的交点,利用导数先得出函数y=f(x)的单调性并画出图象,进而即可得出答案.
解答:解:由x3-3x2-a=0,得x3-3x2=a.
令f(x)=x3-3x2,解x3-3x2=0,得x1=x2=0,或x3=3,即函数f(x)有一个零点3,和一个二重零点0.
又f(x)=3x2-6x=3x(x-2),令f(x)=0,则x=0或2.列表如下:
由表格可以看出:
函数f(x)在区间(-∞,0)上单调递增,在区间(0,2)上单调递减,在区间(2,+∞)上单调递增.
在x=0时取得极大值,且f(0)=0;在x=2时取得极小值,且f(2)=-4.
综上可画出函数y=f(x)的图象,如下图:
要使函数y=f(x)与y=a由三个不同的交点,则必须满足-4<x<0.
此时满足 关于x的方程x3-3x2-a=0有3个不同的实数解.
故答案为(-4,0).
点评:把方程的解得问题转化问题函数的交点问题和熟练应用导数得到函数的单调性并画出图象是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江西模拟)球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,△ABC是边长为2的正三角形,面SAB⊥面ABC,则棱锥S-ABC的体积的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)在△ABC中,P是BC边中点,角A、B、C的对边分别是a、b、c,若c
AC
+a
PA
+b
PB
=
0
,则△ABC的形状为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)已知数列{an}是各项均不为0的等差数列,公差为d,Sn 为其前n项和,且满足an2=S2n-1,n∈N*.数列{bn}满足bn=
1anan+1
,Tn为数列{bn}的前n项和.
(1)求数列{an}的通项公式和Tn
(2)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn,成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)已知函数f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1
,x∈R,将函数f(x)向左平移
π
6
个单位后得函数g(x),设△ABC三个角A、B、C的对边分别为a、b、c.
(Ⅰ)若c=
7
,f(C)=0,sinB=3sinA,求a、b的值;
(Ⅱ)若g(B)=0且
m
=(cosA,cosB)
n
=(1,sinA-cosAtanB)
,求
m
n
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右顶点A作斜率为-1的直线,该直线与双曲线的两条渐进线的交点分别为B、C.若
AB
=
1
2
BC
,则双曲线的离心率是
5
5

查看答案和解析>>

同步练习册答案