【题目】已知函数
.
(Ⅰ)讨论
的单调性;
(Ⅱ)若
恒成立,证明:当
时,
.
【答案】(Ⅰ)当
时,
在
上递增;当
时,
单调递增;当
时,
单调递减;(Ⅱ)证明过程详见解析.
【解析】
试题分析:本题主要考查导数的运算,利用导数研究函数的单调区间、最值等数学知识和方法,突出考查分类讨论思想和综合分析问题和解决问题的能力.第一问是利用导数研究函数的单调性,但是题中有参数
,需对参数
进行讨论,可以转化为含参一元一次不等式的解法;第二问先是恒成立问题,通过第一问的单调性对
进行讨论,通过求函数的最大值求出符合题意的
,表达式确定后,再利用函数的单调性的定义,作差,放缩法证明不等式.
试题解析:(Ⅰ)
.
若
,
,
在
上递增;
若
,当
时,
,
单调递增;
当
时,
,
单调递减. 5分
(Ⅱ)由(Ⅰ)知,若
,
在
上递增,
又
,故
不恒成立.
若
,当
时,
递减,
,不合题意.
若
,当
时,
递增,
,不合题意.
若
,
在
上递增,在
上递减,
符合题意,
故
,且
(当且仅当
时取“
”). 8分
当
时,![]()
![]()
,
所以
. 12分
科目:高中数学 来源: 题型:
【题目】如图,在圆锥PO中,已知
,圆O的直径
,C是弧AB的中点,D为AC的中点.
![]()
(1)求异面直线PD和BC所成的角的正切值;
(2)求直线OC和平面PAC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】. (12分)如图所示,函数
的一段图象过点
.
(1)求函数
的表达式;
(2)将函数
的图象向右平移
个单位,得函数
的图象,求函数
的最大值,并求此时自变量
的取值集合.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为
(a>0,β为参数).以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos
=
.
(1)若曲线C与l只有一个公共点,求a的值;
(2)A,B为曲线C上的两点,且∠AOB=
,求△OAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcos θ=4.
(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|·|OP|=16,求点P的轨迹C2的直角坐标方程;
(2)设点A的极坐标为
,点B在曲线C2上,求△OAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数a满足f(log2a)+f(
a)≤2f(1),则a的取值范围是( )
A.![]()
B.[1,2]
C.![]()
D.(0,2]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得
分,回答不正确得
分,第三个问题回答正确得
分,回答不正确得
分.如果一个挑战者回答前两个问题正确的概率都是
,回答第三个问题正确的概率为
,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题总分不低于
分就算闯关成功.
(Ⅰ)求至少回答对一个问题的概率;
(Ⅱ)求这位挑战者回答这三个问题的总得分X的分布列;
(Ⅲ)求这位挑战者闯关成功的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com