【题目】分别根据下列条件,求圆的方程:
(1)过两点(0,4),(4,6),且圆心在直线x﹣2y﹣2=0上;
(2)半径为
,且与直线2x+3y﹣10=0切于点(2,2).
【答案】
(1)解:由于圆心在直线x﹣2y﹣2=0上,可设圆心坐标为(2b+2,b),
再根据圆过两点A(0,4),B(4,6),可得[(2b+2)﹣0]2+(b﹣4)2=[(2b+2)﹣4]2+(b﹣6)2,
解得b=1,可得圆心为(4,1),半径为
=5,
故所求的圆的方程为(x﹣4)2+(y﹣1)2=25
(2)解:设圆心坐标为(x,y),则
,
∴x=0,y=﹣1或x=1.8,y=5.6,
∴圆的方程为(x﹣4)2+(y﹣5)2=13或x2+(y+1)2=13
【解析】(1)由圆心在直线x﹣2y﹣2=0上,可设圆心坐标为(2b+2,b),再根据圆心到两点A(0,4)、B(4,6)的距离相等,求出b的值,可得圆心坐标和半径,从而求得圆的标准方程;(2)设圆心坐标为(x,y),利用半径为
,且与直线2x+3y﹣10=0切于点P(2,2),建立方程组,求出圆心坐标,即可求得圆的方程.
【考点精析】根据题目的已知条件,利用圆的标准方程的相关知识可以得到问题的答案,需要掌握圆的标准方程:
;圆心为A(a,b),半径为r的圆的方程.
科目:高中数学 来源: 题型:
【题目】已知a,b是正实数,设函数f(x)=xlnx,g(x)=﹣a+xlnb.
(Ⅰ)设h(x)=f(x)﹣g(x),求h(x)的单调区间;
(Ⅱ)若存在x0 , 使x0∈[
,
]且f(x0)≤g(x0)成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=mx2﹣2x﹣3,关于实数x的不等式f(x)≤0的解集为(﹣1,n)
(1)当a>0时,解关于x的不等式:ax2+n+1>(m+1)x+2ax;
(2)是否存在实数a∈(0,1),使得关于x的函数y=f(ax)﹣3ax+1(x∈[1,2])的最小值为﹣5?若存在,求实数a的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线y2=8x的准线与双曲线
﹣
=1(a>0,b>0)相交于A、B两点,双曲线的一条渐近线方程是y=
x,点F是抛物线的焦点,且△FAB是等边三角形,则该双曲线的标准方程是( )
A.
﹣
=1
B.
﹣
=1
C.
﹣
=1
D.
﹣
=1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直三棱柱A1B1C1﹣ABC中,
,AB=AC=AA1=1,已知G和E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点),若GD⊥EF,则线段DF的长度的取值范围为( )
A.[
,1)
B.[
,1]
C.(
,1)
D.[
,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国“一带一路”战略构思提出后, 某科技企业为抓住“一带一路”带来的机遇, 决定开发生产一款大型电子设备, 生产这种设备的年固定成本为
万元, 每生产
台,需另投入成本
(万元), 当年产量不足
台时,
(万元); 当年产量不小于
台时
(万元), 若每台设备售价为
万元, 通过市场分析,该企业生产的电子设备能全部售完.
(1)求年利润
(万元)关于年产量
(台)的函数关系式;
(2)年产量为多少台时 ,该企业在这一电子设备的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,按以往比赛经验,甲胜乙的概率为
.
(Ⅰ)求比赛三局甲获胜的概率;
(Ⅱ)求甲获胜的概率;
(Ⅲ)设甲比赛的次数为
,求
的数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com