设直线l:x-y+m=0与抛物线C:y2=4x交于不同两点A,B,F为抛物线的焦点.
(1)求△ABF的重心G的轨迹方程;
(2)如果m=-2,求△ABF的外接圆的方程.
科目:高中数学 来源: 题型:解答题
已知椭圆与双曲线x2-y2=0有相同的焦点,且离心率为
.
(1)求椭圆的标准方程;
(2)过点P(0,1)的直线与该椭圆交于A,B两点,O为坐标原点,若
=2
,求△AOB的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,设椭圆
:![]()
的离心率
,顶点
的距离为
,
为坐标原点.![]()
(1)求椭圆
的方程;
(2)过点
作两条互相垂直的射线,与椭圆
分别交于
两点.
(ⅰ)试判断点
到直线
的距离是否为定值.若是请求出这个定值,若不是请说明理由;
(ⅱ)求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知A,B,C是椭圆W:
+y2=1上的三个点,O是坐标原点.
(1)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;
(2)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心为平面直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1.
(1)求椭圆C的方程;
(2)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的一点,
=λ,求点M的轨迹方程,并说明轨迹是什么曲线.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
己知椭圆C:
(a>b>0)的右焦点为F(1,0),点A(2,0)在椭圆C上,过F点的直线
与椭圆C交于不同两点
.
(1)求椭圆C的方程;
(2)设直线
斜率为1,求线段
的长;
(3)设线段
的垂直平分线交
轴于点P(0,y0),求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
、
为双曲线
:
的左、右焦点,过
作垂直于
轴的直线,在
轴上方交双曲线
于点
,且
.圆
的方程是
.
(1)求双曲线
的方程;
(2)过双曲线
上任意一点
作该双曲线两条渐近线的垂线,垂足分别为
、
,求
的值;
(3)过圆
上任意一点
作圆
的切线
交双曲线
于
、
两点,
中点为
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知F1,F2分别为椭圆C1:
=1(a>b>0)的上下焦点,其中F1是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
.![]()
(1)试求椭圆C1的方程;
(2)与圆x2+(y+1)2=1相切的直线l:y=k(x+t)(t≠0)交椭圆于A,B两点,若椭圆上一点P满足
,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,
是椭圆
的左、右顶点,椭圆
的离心率为
,右准线
的方程为
.![]()
(1)求椭圆方程;
(2)设
是椭圆
上异于
的一点,直线
交
于点
,以
为直径的圆记为
. ①若
恰好是椭圆
的上顶点,求
截直线
所得的弦长;
②设
与直线
交于点
,试证明:直线
与
轴的交点
为定点,并求该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com