精英家教网 > 高中数学 > 题目详情
“1<a≤2”是“函数f(x)=
1
2
x2-9lnx
在区间[a-1,a+1]上单调递减”的(  )
分析:求函数的导数,确定函数的单调递减,利用充分条件和必要条件的定义进行判断即可.
解答:解:函数f(x)的定义域为(0,+∞),
函数的导数为f'(x)=x-
9
x
=
x2-9
x

由f'(x)=
x2-9
x
≤0,
解得0<x≤3,
即函数的递减区间为(0,3],
要使函数f(x)在[a-1,a+1]上单调递减,
a-1>0
a+1≤3
,即
a>1
a≤2
,即1<a≤2,
∴“1<a≤2”是“函数f(x)=
1
2
x2-9lnx
在区间[a-1,a+1]上单调递减”的充要条件.
故选:C.
点评:本题主要考查充分条件和必要条件的应用,利用导数求出函数的单调递减区间是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函f(x)=ln x,g(x)=
12
ax2+bx(a≠0).
(1)若a=-2时,函h(x)=f(x)-g(x),在其定义域是增函数,求b的取值范围;
(2)在(1)的结论下,设函数φ(x)=e2x+bex,x∈[0,ln2],求函数φ(x)的最小值;
(3)当a=-2,b=4时,求证2x-f(x)≥g(x)-3.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x1,x2(x1≠x2)是函数f(x)=ax3+bx2-a2x(a>0)的两个极值点.
(1)若x1=-1,x2=2,求函f(x)的解析式;
(2)若|x1|+|x2|=2
2
,求b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函f(x)=ln x,g(x)=数学公式ax2+bx(a≠0).
(1)若a=-2时,函h(x)=f(x)-g(x),在其定义域是增函数,求b的取值范围;
(2)在(1)的结论下,设函数φ(x)=e2x+bex,x∈[0,ln2],求函数φ(x)的最小值;
(3)当a=-2,b=4时,求证2x-f(x)≥g(x)-3.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省宜宾市南溪一中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

已知函f(x)=ln x,g(x)=ax2+bx(a≠0).
(1)若a=-2时,函h(x)=f(x)-g(x),在其定义域是增函数,求b的取值范围;
(2)在(1)的结论下,设函数φ(x)=e2x+bex,x∈[0,ln2],求函数φ(x)的最小值;
(3)当a=-2,b=4时,求证2x-f(x)≥g(x)-3.

查看答案和解析>>

科目:高中数学 来源:2010学年吉林省长春市东北师大附中高考数学五模试卷(文科)(解析版) 题型:解答题

设x1,x2(x1≠x2)是函数f(x)=ax3+bx2-a2x(a>0)的两个极值点.
(1)若x1=-1,x2=2,求函f(x)的解析式;
(2)若|x1|+|x2|=2,求b的最大值.

查看答案和解析>>

同步练习册答案