(本题满分20分,其中第1小题4分,第2小题6分,第3小题10分.)
平面直角坐标系
中,已知
,…,
是直线
上的
个点(
,
、
均为非零常数).
(1)若数列
成等差数列,求证:数列
也成等差数列;
(2)若点
是直线
上一点,且
,求
的值;
(3)若点
满足
,我们称
是向量
,
,…,
的线性组合,
是该线性组合的系数数列.
当
是向量
,
,…,
的线性组合时,请参考以下线索:
① 系数数列
需满足怎样的条件,点
会落在直线
上?
② 若点
落在直线
上,系数数列
会满足怎样的结论?
③ 能否根据你给出的系数数列
满足的条件,确定在直线
上的点
的个数或坐标?
试提出一个相关命题(或猜想)并开展研究,写出你的研究过程.【本小题将根据你提出的命题(或猜想)的完备程度和研究过程中体现的思维层次,给予不同的评分】
(本题满分20分,其中第1小题4分,第2小题6分,第3小题10分)
解:(1)证:设等差数列
的公差为
,
因为
,
所以
为定值,即数列
也成等差数列.
(2)证:因为点
、
和
都是直线
上一点,故有
(
)
于是,![]()
![]()
![]()
令
,
,则有
.
(3)(文科)假设存在点
满足要求
,
则有
,
又当
时,恒有
,则又有
,
所以![]()
又因为数列
成等差数列,
于是
,
所以,![]()
故
,同理
,且点
在直线上(是
、
的中点),即存在点
满足要求.
(3)(理科)
提出命题:(在本题大前提下)若点
满足
,则系数数列的和
是点
在直线
上的充要条件.
证明:设
,由条件
,
先证充分性:“当
时,点
在直线
上”.
因为
,
故![]()
而
(
),所以
![]()
![]()
![]()
当
时,即有
,即点
在直线
上.
再证必要性:“若点
在直线
上,则
.”
因为
,
故![]()
而因为
(
),所以
![]()
![]()
![]()
又因为点
在直线
上,所以满足
,故
.
补充:由以上证明进一步可知,对于直线
上任一点
,若满足
,则都有
.
科目:高中数学 来源: 题型:
(本题满分12分)
| 付款方式 | 分1期 | 分2期 | 分3期 | 分4期 | 分5期 |
| 频 数 | 40 | 20 |
| 10 |
|
某品牌的汽车4S店,对最近100位采用分期付款的购车者进行统计,统计结果如右表所示:已知分3期付款的频率为0.2,4S店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款其利润为1.5万元;分4期或5期付款,其利润为2万元. 用
表示经销一辆汽车的利润.(1)求上表中的
值;(2)若以频率作为概率,求事件A:“购买该品牌汽车的3位顾客中,至多有1位采用3期付款”的概率
;(3)求
的分布列及数学期望
.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年福建省高三第一次月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元.
(1)分别写出两种产品的收益与投资的函数关系;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市十三校高三上学期第一次联考试题文科数学 题型:解答题
(本题满分14分,第1小题满分7分,第2小题满分7分)
为了研究某种癌细胞的繁殖规律和一种新型抗癌药物的作用,将癌细胞注入一只小白鼠体内进行实验,经检测,癌细胞的繁殖规律与天数的关系如下表.已知这种癌细胞在小白鼠体内的个数超过
时小白鼠将会死亡,注射这种抗癌药物可杀死其体内癌细胞的
.
|
天数 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
… |
|
癌细胞个数 |
1 |
2 |
4 |
8 |
16 |
32 |
64 |
… |
(1)要使小白鼠在实验中不死亡,第一次最迟应在第几天注射该种药物?(精确到1天)
(2)若在第10天,第20天,第30天,……给小白鼠注射这种药物,问第38天小白鼠是否仍然存活?请说明理由.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年上海市闸北区高三第一学期期末数学理卷 题型:解答题
(满分20分)本题有2小题,第1小题12分,第2小题8分.
设
为定义域为
的函数,对任意
,都满足:
,
,且当
时,![]()
(1)请指出
在区间
上的奇偶性、单调区间、最大(小)值和零点,并运用相关定义证明你关于单调区间的结论;
(2)试证明
是周期函数,并求其在区间
上的解析式.
查看答案和解析>>
科目:高中数学 来源:2013届河北省高二上学期期末考试理科数学 题型:解答题
(本题满分12分)某电视生产厂家今年推出A、B、C、D四种款式电视机,每种款式电视机的外观均有黑色、银白色两种。四月份的电视机产量如下表(单位:台)
|
|
款式A |
款式B |
款式C |
款式D |
|
黑色 |
150 |
200 |
200 |
|
|
银白色 |
160 |
180 |
200 |
150 |
若按电视机的款式采取分层抽样的方法在这个月生产的电视机中抽取70台,其中有C种款式的电视机20台。
(1) 求
的值;
(2) 若在C款式电视机中按颜色进行分层抽样抽取一个容量为6的样本,然后将该样本看成一个总体,从中任取2台,求恰有1台黑色、1台银白色电视的概率;
(3) 用简单随机抽样的方法从A种款式电视机中抽取10台,对其进行检测,它们的得分如下:94,92,92,96,97,95,98,90,94,97。如果把这10台电视机的得分看作一个样本,从中任取一个数,求该数与样本平均数之差的绝对值不超过2的概率。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com