精英家教网 > 高中数学 > 题目详情

已知一个三边分别为15、19、23单位长度的三角形,若把它的三边分别缩短x单位长度且构成钝角三角形,试用不等式写出x的不等关系.

答案:
解析:

解:缩短x单位长度后三边长分别为15-x,19-x,23-x,要使新的三角形是钝角三角形,则


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,△ABC的内切圆与三边AB、BC、CA的切点分别为D、E、F,已知B(-
2
,0)
,C(
2
,0)
,内切圆圆心I(1,t).设A点的轨迹为L
(1)求L的方程;
(2)过点C作直线m交曲线L于不同的两点M、N,问在x轴上是否存在一个异于点C的定点Q.使
QM
QC
|
QM
|
=
QN
QC
|
QN
|
对任意的直线m都成立?若存在,求出Q的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海)已知抛物线F:y2=4x
(1)△ABC的三个顶点在抛物线F上,记△ABC的三边AB、BC、CA所在的直线的斜率分别为kAB,kBC,kCA,若A的坐标在原点,求kAB-kBC+kCA的值;
(2)请你给出一个以P(2,1)为顶点、其余各顶点均为抛物线F上的动点的多边形,写出各多边形各边所在的直线斜率之间的关系式,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届浙江省高一下期中理科数学试卷(解析版) 题型:解答题

(本题满分15分)已知的三边长分别为,以点为圆心,为半径作一个圆.

(1) 求的面积;

(2)设的任意一条直径,记,求的最大值和最小值,并说明当取最大值和最小值时,的位置特征是什么?

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年上海市普通高等学校高三春季招生数学卷 题型:解答题

(本题满分14分)已知抛物线

(1)△ABC的三个顶点在抛物线F上,记△ABC的三边AB、BC、CA所在的直线的斜率分别为,若A的坐标在原点,求的值;

(2)请你给出一个以为顶点、其余各顶点均为抛物线F上的动点的多边形,写出各多边形各边所在的直线斜率之间的关系式,并说明理由

 

查看答案和解析>>

科目:高中数学 来源:2011年上海市春季高考数学试卷(解析版) 题型:解答题

已知抛物线F:y2=4x
(1)△ABC的三个顶点在抛物线F上,记△ABC的三边AB、BC、CA所在的直线的斜率分别为kAB,kBC,kCA,若A的坐标在原点,求kAB-kBC+kCA的值;
(2)请你给出一个以P(2,1)为顶点、其余各顶点均为抛物线F上的动点的多边形,写出各多边形各边所在的直线斜率之间的关系式,并说明理由.

查看答案和解析>>

同步练习册答案