【题目】已知数列{an}的前n项和为Sn , 且满足Sn=2an﹣2;数列{bn}的前n项和为Tn , 且满足b1=1,b2=2,
.
(1)求数列{an}、{bn}的通项公式;
(2)是否存在正整数n,使得
恰为数列{bn}中的一项?若存在,求所有满足要求的bn;若不存在,说明理由.
【答案】
(1)解:由Sn=2an﹣2,则当n≥2时,Sn﹣1=2an﹣1﹣2,
两式相减得:an=2an﹣2an﹣1,则an=2an﹣1,
由S1=2a1﹣2,则a1=2,
∴数列{an}是以2为首项,2为公比的等比数列,则an=2n,
由
.
则
=
,
=
,
=
,,
=
.
= ![]()
以上各式相乘,
=
,则2Tn=bnbn+1,
当n≥2时,2Tn﹣1=bn﹣1bn,两式相减得:2bn=bn(bn+1﹣bn﹣1),即bn+1﹣bn﹣1=2,
∴数列{bn}的奇数项,偶数项分别成等差数列,
由
=
,则b3=T2=b1+b2=3,b1+b3=2b2,
∴数列{bn}是以b1=1为首项,1为公差的等差数列,
∴数列{bn}的通项公式bn=n;
(2)当n=1时,
无意义,
设cn=
=
,(n≥2,n∈N*),
则cn+1﹣cn=
﹣
=
<0,
即cn>cn+1>1,
显然2n+n+1>2n﹣(n+1),则c2=7>c3=3>c4>>1,
∴存在n=2,使得b7=c2,b3=c3,
下面证明不存在c2=2,否则,cn=
=2,即2n=3(n+1),
此时右边为3的倍数,而2n不可能是3的倍数,故该不等式成立,
综上,满足要求的bn为b3,b7.
【解析】(1)当n≥2时,Sn=2an﹣2,Sn﹣1=2an﹣1﹣2,由an=Sn-Sn-1可得an=2an﹣2an﹣1,则数列{an}是以2为首项,2为公比的等比数列,则an=2n由
=
,使用累乘法可得到2Tn=bnbn+1,由bn=Tn-Tn-1可得bn+1﹣bn﹣1=2,数列{bn}的奇数项,偶数项分别成等差数列,数列{bn}的通项公式bn=n,(2)设cn=
,作差比较大小,cn>cn+1>1,根据数列的单调性,即可求得存在存在n=2,使得b7=c2,b3=c3.
【考点精析】本题主要考查了数列的前n项和和数列的通项公式的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系
;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,AC=AA1=4,AB=3,AB⊥AC.![]()
(Ⅰ)求证:A1C⊥平面ABC1;
(Ⅱ)求二面角A﹣BC1﹣A1的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,椭圆
过点
,直线
交
轴于
,且
,
为坐标原点.
(1)求椭圆
的方程;
(2)设
是椭圆
的上顶点,过点
分别作直线
交椭圆
于
两点,设这两条直线的斜率分别为
,且
,证明:直线
过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】利民中学为了了解该校高一年级学生的数学成绩,从高一年级期中考试成绩中抽出100名学生的成绩,由成绩得到如下的频率分布直方图.
![]()
根据以上频率分布直方图,回答下列问题:
(1)求这100名学生成绩的及格率;(大于等于60分为及格)
(2)试比较这100名学生的平均成绩和中位数的大小.(精确到0.1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知直线l1:4x﹣3y+6=0和直线l2:x=﹣1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是( )
A.2
B.3
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知线段
的端点
的坐标是
,端点
在圆
上运动.
(Ⅰ)求线段
的中点
的轨迹
的方程;
(Ⅱ)设圆
与曲线
的两交点为
,求线段
的长;
(Ⅲ)若点
在曲线
上运动,点
在
轴上运动,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C的圆心在直线3x﹣y=0上且在第一象限,圆C与x相切,且被直线x﹣y=0截得的弦长为2
.
(1)求圆C的方程;
(2)若P(x,y)是圆C上的点,满足
x+y﹣m≤0恒成立,求m的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=ax+
,g(x)=ex﹣3ax,a>0,若对x1∈(0,1),存在x2∈(1,+∞),使得方程f(x1)=g(x2)总有解,则实数a的取值范围为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com