Éèx1£¬x2¡ÊR£¬³£Êýa£¾0£¬¶¨ÒåÔËËã¡°*¡±£ºx1*x2=£¨x1+x2£©2-£¨x1-x2£©2£®
£¨1£©Èôx¡Ý0£¬Ç󶯵ãµÄ¹ì¼£CµÄ·½³Ì£»
£¨2£©Èôa=2£¬²»¹ýÔ­µãµÄÖ±ÏßlÓëxÖá¡¢yÖáµÄ½»µã·Ö±ðΪT£¬S£¬²¢ÇÒÓ루1£©ÖеĹ켣C½»ÓÚ²»Í¬µÄÁ½µãP£¬Q£¬ÊÔÇóµÄȡֵ·¶Î§£»
£¨3£©ÉèP£¨x£¬y£©ÊÇÆ½ÃæÉϵÄÈÎÒâÒ»µã£¬¶¨Òå=£®ÈôÔÚ£¨1£©ÖеĹ켣C´æÔÚ²»Í¬µÄÁ½µãA1£¬A2£¬Ê¹µÃd1£¨Ai£©=³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©¶¯µãµÄ¹ì¼£CµÄ·½³Ì¼´£¬´úÈ붨ÒåµÄÔËË㣬¼´¿ÉµÃ¹ì¼£CµÄ·½³Ì
£¨2£©ÓÉÌâÒâµÃy2=8x£¨y¡Ý0£©£¬ÉèÖ±Ïßl£ºx=my+c£¬ÓÉÒÑÖªm£¾0£¬c£¼0£¬½«S£¬T£¬P£¬QµÄ×ø±ê´úÈë
¿ÉÖªÖ»ÐèÇóxp+xq£¬xp•xq£¬½«Ö±ÏßÓëÇúÏßÁªÁ¢ºó¼´¿ÉµÃxp+xq£¬xp•xq£¬´úÈë¼´µÃÓëmµÄº¯Êý¹ØÏµ£¬Çó·¶Î§¼´¿É
£¨3£©ÉèA1£¨x1£¬y1£©£¬A2£¨x2£¬y2£©£¬Óɶ¨Òå=£¬·Ö±ð¼ÆËã
d1£¨A1£©£¬d1£¨A2£©£¬d2£¨A1£©£¬d2£¨A2£©£¬d1£¨Ai£©=³ÉÁ¢£¬¿Éת»¯Îª·½³ÌÔÚx¡Ê[0£¬+¡Þ£©ÓÐÁ½¸ö²»µÈµÄʵÊý½â£¬ÀûÓÃΤ´ï¶¨ÀíµÃµ½²»µÈʽ×飬¼´¿ÉÇóµÃʵÊýaµÄȡֵ·¶Î§
½â´ð£º½â£º£¨1£©Éè¡à¶¯µãPµÄ¹ì¼£CµÄ·½³ÌΪ£ºy2=4ax£¨y¡Ý0£©
£¨2£©ÓÉÌâÒâµÃy2=8x£¨y¡Ý0£©£¬ÉèÖ±Ïßl£ºx=my+c£¬ÓÉÒÑÖªm£¾0£¬c£¼0
ÔòT£¨c£¬0£©£®S£¬T£¬P£¬Q¶¼ÔÚÖ±ÏßlÉÏ£¬¡à=£¬ÓÉÌâµÃc£¼0£¬xP£¾0£¬xQ£¾0¡à=
ÓÉÏûÈ¥yµÃx2-£¨2c+8m2£©x+c2=0
¡à¡ßc£¼0£¬¡à¡à¡à=£¾2£¬
µÄȡֵ·¶Î§ÊÇ£¨2£¬+¡Þ£©
£¨3£©ÓÉ£¬d2£¨P£©=|x-a|
ÉèA1£¨x1£¬y1£©£¬A2£¨x2£¬y2£©£¬ÓÉÒÑÖªÓÐ
¹Ê·½³ÌÔÚx¡Ê[0£¬+¡Þ£©ÓÐÁ½¸ö²»µÈµÄʵÊý½â
ÕûÀíµÃ£¨a-1£©x2-£¨2a2+4a£©x+a3=0ÔÚx¡Ê[0£¬+¡Þ£©ÓÐÁ½¸ö²»µÈµÄʵÊý½â¡à
ÓÖ¡ßa£¾0£¬¡àa£¾1
¹ÊʵÊýaµÄȡֵ·¶Î§ÊÇ£¨1£¬+¡Þ£©
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁ˹켣ÎÊÌ⣬ֱÏßÓëÇúÏßµÄλÖùØÏµ£¬Ò»Ôª¶þ´Î·½³Ì¸ùµÄ·Ö²¼µÈ֪ʶ£¬ÐèÒªÓкÜÇ¿µÄÀí½âÁ¦ºÍÔËËãÁ¦²Å¿É˳ÀûÇó½â£¬ÊôÄÑÌâ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèx1¡¢x2¡ÊR£¬³£Êýa£¾0£¬¶¨ÒåÔËËã¡°*¡±£ºx1*x2=£¨ x1+x2£©2-£¨ x1-x2£©2£¬Èôx¡Ý0£¬Ôò¶¯µãP£¨x£¬
x*a
£©µÄ¹ì¼£ÊÇ£¨¡¡¡¡£©
A¡¢Ô²
B¡¢ÍÖÔ²µÄÒ»²¿·Ö
C¡¢Ë«ÇúÏßµÄÒ»²¿·Ö
D¡¢Å×ÎïÏßµÄÒ»²¿·Ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèx1¡¢x2¡ÊR£¬³£Êýa£¾0£¬¶¨ÒåÔËËã¡°¨’¡±£ºx1¨’x2=£¨x1+x2£©2£¬¶¨ÒåÔËËã¡°?¡±£ºx1?x2=£¨x1-x2£©2£»¶ÔÓÚÁ½µãA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬¶¨Òåd(AB)=
y1?y2
£®
£¨1£©Èôx¡Ý0£¬Ç󶯵ãP£¨x£¬
(x¨’a)-(x?a)
£© µÄ¹ì¼£C£»
£¨2£©ÒÑÖªÖ±Ïßl1 £º y=
1
2
x+1
Ó루1£©Öй켣C½»ÓÚA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©Á½µã£¬Èô
(x1?x2)+(y1?y2)
=8
15
£¬ÊÔÇóaµÄÖµ£»
£¨3£©ÔÚ£¨2£©ÖÐÌõ¼þÏ£¬ÈôÖ±Ïßl2²»¹ýÔ­µãÇÒÓëyÖá½»ÓÚµãS£¬ÓëxÖá½»ÓÚµãT£¬²¢ÇÒÓ루1£©Öй켣C½»ÓÚ²»Í¬µÄÁ½µãP¡¢Q£¬ÊÔÇó
|d(ST)|
|d(SP)|
+
|d(ST)|
|d(SQ)|
µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèx1£¬x2¡ÊR£¬³£Êýa£¾0£¬¶¨ÒåÔËËã¡°¨’¡±£¬x1¨’x2=(x1+x2)2£¬¶¨ÒåÔËËã¡°?¡±£¬x1?x2=(x1-x2)2£®ÏÖÓÐx¡Ý0£¬Ôò¶¯µãP(x£¬
(x¨’a)-(x?a)
)
µÄ¹ì¼£·½³ÌÊÇ
y2=4ax£¨y¡Ý0£©
y2=4ax£¨y¡Ý0£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèx1£¬x2¡ÊR£¬³£Êýa£¾0£¬¶¨ÒåÔËËã¡°*¡±£ºx1*x2=£¨x1+x2£©2-£¨x1-x2£©2£®
£¨1£©Èôx¡Ý0£¬Ç󶯵ãP(x£¬
x*a
)
µÄ¹ì¼£CµÄ·½³Ì£»
£¨2£©Èôa=2£¬²»¹ýÔ­µãµÄÖ±ÏßlÓëxÖá¡¢yÖáµÄ½»µã·Ö±ðΪT£¬S£¬²¢ÇÒÓ루1£©ÖеĹ켣C½»ÓÚ²»Í¬µÄÁ½µãP£¬Q£¬ÊÔÇó
|
ST
|
|
SP
|
+
|
ST
|
|
SQ
|
µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèx1£¬x2¡ÊR£¬³£Êýa£¾0£¬¶¨ÒåÔËËã¡°*¡±£ºx1*x2=£¨x1+x2£©2-£¨x1-x2£©2£®
£¨1£©Èôx¡Ý0£¬Ç󶯵ãP(x£¬
x*a
)
µÄ¹ì¼£CµÄ·½³Ì£»
£¨2£©Èôa=2£¬²»¹ýÔ­µãµÄÖ±ÏßlÓëxÖá¡¢yÖáµÄ½»µã·Ö±ðΪT£¬S£¬²¢ÇÒÓ루1£©ÖеĹ켣C½»ÓÚ²»Í¬µÄÁ½µãP£¬Q£¬ÊÔÇó
|
ST
|
|
SP
|
+
|
ST
|
|
SQ
|
µÄȡֵ·¶Î§£»
£¨3£©ÉèP£¨x£¬y£©ÊÇÆ½ÃæÉϵÄÈÎÒâÒ»µã£¬¶¨Òåd1(P)=
1
2
(x*x)+(y*y)
£¬d2(P)
=
1
2
(x-a)*(x-a)
£®ÈôÔÚ£¨1£©ÖеĹ켣C´æÔÚ²»Í¬µÄÁ½µãA1£¬A2£¬Ê¹µÃd1£¨Ai£©=
a
d2(Ai)(i=1£¬2)
³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸