精英家教网 > 高中数学 > 题目详情
已知函数F(x)=x3+x2+(b-1)x+1(b为常数,且b≠0),f(x)=F′(x),数列{an}的首项为1,前n项和为Sn,且an+1+an≠0(n∈N*),点An(an,2bSn)(n≥2,n∈N*)在函数f(x)的图象上.

(1)证明数列{an}是等差数列;

(2)若b=4,向量=(n,)(n∈N*),对m、n∈N*(m≠n),动点M满足·=0,点N是曲线E:x2+y2-2x-6y+9=0上的动点,求|MN|的最小值.

解:(1)f(x)=F′(x)=[x3+x2+(b-1)x+1]′=x2+bx+b-1.

∵An(an,2bSn)(n≥2,n∈N*)在函数f(x)的图象上,∴2bSn=an2+ban+b-1(n≥2).①

∴2bSn+1=an+12+ban+1+b-1.②

②-①,得2b(Sn+1-Sn)=an+12-an2+ban+1-ban(n≥2),即2ban+1=(an+1-an)(an+1+an)+ban+1-ban.

∴b(an+1+an)=(an+1-an)(an+1+an)(n≥2,n∈N*).∵an+an+1≠0,∴an+1-an=b(n≥2,n∈N*).

又当n=2时,2bS2=an2+ban+b-1,即2b(a1+a2)=a22+ba2+b-1.

又a1=1,∴2b+2ba2=a22+ba2+b-1,a22-ba2-(b+1)=0.

即[a2-(b+1)](a2+1)=0.∴a2=b+1或a2=-1.∵an+an+1≠0,a1=1,∴a2≠-1.∴a2=b+1.∴a2-a1=b.

∴an+1-an=b对一切正整数n均成立.

∴数列{an}是以1为首项,b为公差的等差数列.

(2)由(1),得an=1+(n-1)b,当b=4时,an=4n-3.

∴Sn=n+·4=2n2-n.∴=2n-1.

=(n,2n-1),=(m,2m-1).设M(x,y),则=-=(x,y)-(1,1)=(x-1,y-1),

=-=(n,2n-1)-(m,2m-1)=(n-m,2n-2m).

·=0,∴(x-1)(n-m)+(y-1)(2n-2m)=0.∵m≠n,∴x+2y-3=0.

∴动点M的轨迹是直线l:x+2y-3=0.

曲线E的方程可化为(x-1)2+(y-3)2=1是以(1,3)为圆心,以1为半径的圆.

由点到直线的距离公式,得圆心E到直线l的距离d=.

∴|MN|的最小值是-1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案