已知
,函数
.
(Ⅰ)求函数
的单调区间;
(Ⅱ)求函数
在区间
上的最小值.
科目:高中数学 来源: 题型:解答题
已知函数
.
(1)当
时,求函数
在
上的最大值;
(2)令
,若
在区间
上不单调,求
的取值范围;
(3)当
时,函数
的图象与
轴交于两点
,且
,又
是
的导函数.若正常数
满足条件
.证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,函数
.
(I)试求f(x)的单调区间。
(II)若f(x)在区间
上是单调递增函数,试求实数a的取值范围:
(III)设数列
是公差为1.首项为l的等差数列,数列
的前n项和为
,求证:当
时,
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
.
(I)当
时,求
的单调区间
(Ⅱ)若不等式
有解,求实数m的取值菹围;
(Ⅲ)定义:对于函数
和
在其公共定义域内的任意实数
,称
的值为两函数在
处的差值。证明:当
时,函数
和
在其公共定义域内的所有差值都大干2。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com