精英家教网 > 高中数学 > 题目详情
对数列{an}(n∈N+,an∈N+),令bk为a1,a2,…,ak中的最大值,称数列{bn}为{an}的“峰值数列”,例如:数列2,1,3,7,5的峰值数列为2,2,3,7,7,由以上定义可计算出峰值数列为1,3,3,9,9的所有数列{an}的个数是(    )(用数字作答)。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N*);一般地,规定{△kan} 为数列{an}的k阶差分数列,其中△kan=△k-1an+1-△k-1an(k∈N*,k≥2).已知数列{an}的通项公式an=n2+n(n∈N*),则以下结论正确的序号为
①④
①④

①△an=2n+2;       
②数列{△3an}既是等差数列,又是等比数列;
③数列{△an}的前n项之和为an=n2+n;   
④{△2an}的前2014项之和为4028.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}n∈N满足a0=0,a1=2,且对一切n∈N,有an+2=2an+1-an+2
(1)求数列{an}的通项公式;
(2)当n∈N*时,令bn=
n+1
n+2
.
1
an
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足:a1=a,an+1=
2an
an+1
(n∈N*
).
(1)若数列{an}是无穷常数列,求a的值;
(2)当a∈(0,1)时,对数列{an}的任意相邻三项an,an+1,an+2,证明:
an
(1-
a
2
n
)
2
+
a
2
n+1
(1-
a
3
n+1
)
2
+
a
3
n+2
(1-
a
4
n+2
)
2
1
(1-an+2)2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an=n-16,bn=(-1)n|n-15|,其中n∈N*
(1)求满足an+1=|bn|的所有正整数n的集合;
(2)若n≠16,求数列
bnan
的最大值和最小值;
(3)记数列{an bn}的前n项和为Sn,求所有满足S2m=S2n(m<n)的有序整数对(m,n).

查看答案和解析>>

同步练习册答案