精英家教网 > 高中数学 > 题目详情
对于四面体ABCD,给出下列四个命题:

①若AB=AC,BD=CD,则BC⊥AD;②若AB=CD,AC=BD,则BC⊥AD;③若AB⊥AC,BD⊥CD,则BC⊥AD;④若AB⊥CD,BD⊥AC,则BC⊥AD.

其中真命题的序号是_________.(写出所有真命题的序号)

答案:①④  对于命题①,如图①取BC的中点E,连结AE、DE,则BC⊥AE,BC⊥DE,∴BC⊥AD.

对于命题④,如图②,过A向平面BCD作垂线AO,连结BO与CD交于点E,连结CO与BD交于点F,则CD⊥BE,同理,CF⊥BD.

∴O为△BCD的垂心.连结DO,则BC⊥DO,BC⊥AO,∴BC⊥AD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、对于四面体ABCD,下列命题正确的序号是
①④⑤

①相对棱AB与CD所在的直线异面;
②由顶点A作四面体的高,其垂足是△BCD的三条高线的交点;
③若分别作△ABC和△ABD的边AB上的高,则这两条高所在直线异面;
④分别作三组相对棱中点的连线,所得的三条线段相交于一点;
⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.

查看答案和解析>>

科目:高中数学 来源: 题型:

15、对于四面体ABCD,下列命题正确的是
①④⑤
.(写出所有正确命题的编号).
①相对棱AB与CD所在的直线是异面直线;
②由顶点A作四面体的高,其垂足是△BCD三条高线的交点;
③若分别作△ABC和△ABD的边AB上的高,则这两条高的垂足重合;
④任何三个面的面积之和都大于第四个面的面积;
⑤分别作三组相对棱中点的连线,所得的三条线段相交于一点.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、对于四面体ABCD,有如下命题
①棱AB与CD所在的直线异面;
②过点A作四面体ABCD的高,其垂足是△BCD的三条高线的交点;
③若分别作△ABC和△ABD的边AB上的高,则这两条高所在直线异面;
④分别作三组相对棱的中点连线,所得的三条线段相交于一点,
其中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

17、对于四面体ABCD,下列命题正确的是
①④
.(写出所有正确命题的编号)
①相对棱AB与CD所在的直线异面
②由顶点A作四面体的高,其垂足必是△BCD的三条高线的交点
③若分别作△ABC和△ABD的边AB上的高,则这两条高所在直线必异面
④分别作三组相对棱中点的连线,所得的三条线段相交于一点.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下五个命题中,正确命题的个数是
3
3

①不共面的四点中,其中任意三点不共线;
②若a,b,c为空间中不重合的三条直线,若a⊥c,b⊥c,则a∥b;
③对于四面体ABCD,任何三个面的面积之和都大于第四个面的面积;
④对于四面体ABCD,相对棱AB 与CD 所在的直线是异面直线;
⑤各个面都是三角形的几何体是三棱锥.

查看答案和解析>>

同步练习册答案