精英家教网 > 高中数学 > 题目详情

如图,在底面是正方形的四棱锥中,于点中点,上一动点.

(1)求证:

(1)确定点在线段上的位置,使//平面,并说明理由.

(3)如果PA=AB=2,求三棱锥B-CDF的体积

 

【答案】

⑴详见解析;⑵当中点时,//平面;(3)三棱锥B-CDF的体积为.

【解析】

试题分析:⑴证空间两直线垂直的常用方法是通过线面垂直来证明,本题中,由于直线在平面内,所以考虑证明平面.⑵注意平面与平面相交于,而直线在平面内,故只需即可,而这又只需中点即可.(3)求三棱锥B-CDF的体积中转化为求三棱锥F-BCD的体积,这样底面面积与高都很易求得.

试题解析:⑴∵,四边形是正方形,

其对角线交于点

.2分

平面,     3分

平面

    4分

⑵当中点,即时,/平面,       5分

理由如下:

连结,由中点,中点,知       6分

平面平面

//平面.                            8分

(3)三棱锥B-CDF的体积为.12分

考点:1、空间直线与平面的关系;2、三棱锥的体积.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在底面是正方形的四棱锥P-ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.
(Ⅰ)求证:BD⊥FG;
(Ⅱ)确定点G在线段AC上的位置,使FG∥平面PBD,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在底面是正方形的四棱锥P-ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
(Ⅰ)求证:PD⊥BC;
(Ⅱ)求二面角B-PD-C的大小;
(Ⅲ)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面是正方形的四棱锥P-ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.
(Ⅰ)确定点G在线段AC上的位置,使FG∥平面PBD,并说明理由;
(Ⅱ)当二面角B-PC-D的大小为
3
时,求PC与底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面是正方形的四棱锥P-ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
(I)求证:PD⊥BC;
(II)求二面角B-PD-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在底面是正方形的四棱锥P-ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一动点.
(1)求证:BD⊥FG;
(2)确定点G在线段AC上的位置,使FG∥平面PBD,并说明理由.
(3)如果PA=AB=2,求三棱锥B-CDF的体积.

查看答案和解析>>

同步练习册答案