【题目】在平面直角坐标系
中取两个定点
,
,再取两个动点
,
,且
.
(1)求直线
与
的交点
的轨迹
的方程;
(2)过
的直线与轨迹
交于
两点,过点
作
轴且与轨迹
交于另一点
,
为轨迹
的右焦点,若
,求证:![]()
科目:高中数学 来源: 题型:
【题目】已知函数
,
,直线
与曲线y=f(x)和y=g(x)分别交于M,N两点,设曲线y=f(x)在点M处的切线为
,在点N处的切线为![]()
(1)当b=1时,若
,求a的值
(2)若
,求实数a的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足:a1=1,且当n2时,![]()
(1)若=1,证明数列{a2n1}是等差数列;
(2)若=2.①设
,求数列{bn}的通项公式;②设
,证明:对于任意的p,m N *,当p m,都有
Cm.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某果园种植“糖心苹果”已有十余年,为了提高利润,该果园每年投入一定的资金,对种植采摘包装宣传等环节进行改进.如图是2009年至2018年,该果园每年的投资金额
(单位:万元)与年利润增量
(单位:万元)的散点图:
该果园为了预测2019年投资金额为20万元时的年利润增量,建立了
关于
的两个回归模型;
模型①:由最小二乘公式可求得
与
的线性回归方程:
;
模型②:由图中样本点的分布,可以认为样本点集中在曲线:
的附近,对投资金额
做交换,令
,则
,且有
,
,
,
.
![]()
(1)根据所给的统计量,求模型②中
关于
的回归方程;
(2)分别利用这两个回归模型,预测投资金额为20万元时的年利润增量(结果保留两位小数);
(3)根据下列表格中的数据,比较两种模型的相关指数
,并说明谁的预测值精度更高更可靠.
回归模型 | 模型① | 模型② |
回归方程 |
|
|
| 102.28 | 36.19 |
附:样本
的最小乘估计公式为
,
;
相关指数
.
参考数据:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某果园种植“糖心苹果”已有十余年,根据其种植规模与以往的种植经验,产自该果园的单个“糖心苹果”的果径(最大横切面直径,单位:
)在正常环境下服从正态分布
.
(1)一顾客购买了20个该果园的“糖心苹果”,求会买到果径小于56
的概率;
(2)为了提高利润,该果园每年投入一定的资金,对种植、采摘、包装、宣传等环节进行改进.如图是2009年至2018年,该果园每年的投资金额
(单位:万元)与年利润增量
(单位:万元)的散点图:
![]()
该果园为了预测2019年投资金额为20万元时的年利润增量,建立了
关于
的两个回归模型;
模型①:由最小二乘公式可求得
与
的线性回归方程:
;
模型②:由图中样本点的分布,可以认为样本点集中在曲线:
的附近,对投资金额
做交换,令
,则
,且有
,
,
,
.
(I)根据所给的统计量,求模型②中
关于
的回归方程;
(II)根据下列表格中的数据,比较两种模型的相关指数
,并选择拟合精度更高、更可靠的模型,预测投资金额为20万元时的年利润增量(结果保留两位小数).
回归模型 | 模型① | 模型② |
回归方程 |
|
|
| 102.28 | 36.19 |
附:若随机变量
,则
,
;样本
的最小乘估计公式为
,
;
相关指数
.
参考数据:
,
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形且侧棱垂直与底面的棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵
与刍童
的组合体中,
.
![]()
(1)证明:直线
平面
;
(2)已知
,且三棱锥A-A1B1D1的体积
,求该组合体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
1(a>b>0),A(﹣a,0),B(0,﹣b),P为C上位于第一象限的动点,PA交y轴于点E,PB交x轴于点F.
(1)探究四边形AEFB的面积是否为定值,说明理由;
(2)当△PEF的面积达到最大值时,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com