精英家教网 > 高中数学 > 题目详情
已知函数f(x)=1+sinxcosx.
(1)求函数f(x)的最小正周期和单调递减区间;
(2)若tanx=2,求f(x)的值.
【答案】分析:(1)将函数解析式第二项利用二倍角的正弦函数公式化简,找出ω的值,代入周期公式即可求出函数的最小正周期;由正弦函数的递减区间为[+2kπ,+2kπ](k∈Z)列出不等式,求出不等式的解集即可得到函数的递减区间;
(2)将函数解析式分母看做“1”,以及分子中“1”利用同角三角函数间的基本关系化简,再利用同角三角函数间的基本关系弦化切后,把tanx的值代入即可求出值.
解答:解:(1)f(x)=1+sinxcosx=1+sin2x,
∵ω=2,∴T=π;
+2kπ≤2x≤+2kπ(k∈Z),解得:+kπ≤x≤+kπ(k∈Z),
则函数f(x)的单调递减区间是[+kπ,+kπ](k∈Z);
(2)由已知f(x)==
∴当tanx=2时,f(x)==
点评:此题考查了二倍角的正弦函数公式,函数的值,正弦函数的单调性,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案