椭圆
:
的右焦点
与抛物线
的焦点重合,过
作与
轴垂直的直线
与椭圆交于
两点,与抛物线交于
两点,且
。
(1)求椭圆
的方程;
(2)若过点
的直线与椭圆
相交于两点
,设
为椭圆
上一点,且满足![]()
为坐标原点),当
时,求实数
的取值范围。
科目:高中数学 来源: 题型:解答题
(本小题共14分)
已知椭圆C:
,左焦点
,且离心率![]()
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线
与椭圆C交于不同的两点
(
不是左、右顶点),且以
为直径的圆经过椭圆C的右顶点A. 求证:直线
过定点,并求出定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆
:
(
)的离心率为
,过右焦点
且斜率为1的直线交椭圆
于
两点,
为弦
的中点。
(1)求直线
(
为坐标原点)的斜率
;
(2)设
椭圆
上任意一点,且
,求
的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分,(Ⅰ)小问3分,(Ⅱ)小问9分.)
直线
称为椭圆
的“特征直线”,若椭圆的离心率
.(1)求椭圆的“特征直线”方程;
(2)过椭圆C上一点
作圆
的切线,切点为P、Q,直线PQ与椭圆的“特征直线”相交于点E、F,O为坐标原点,若
取值范围恰为
,求椭圆C的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
(
)过点
(0,2),离心率
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过定点
(2,0)的直线
与椭圆相交于
两点,且
为锐角(其中
为坐标原点),求直线
斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
在平面直角坐标系
中,已知三点
,
,
,曲线C上任意—点
满足:
.
(l)求曲线C的方程;
(2)设点P是曲线C上的任意一点,过原点的直线L与曲线相交于M,N两点,若直线PM,PN的斜率都存在,并记为
,
.试探究
的值是否与点P及直线L有关,并证明你的结论;
(3)设曲线C与y轴交于D、E两点,点M (0,m)在线段DE上,点P在曲线C上运动.若当点P的坐标为(0,2)时,
取得最小值,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
已知点
,
,△
的周长为6.
(Ⅰ)求动点
的轨迹
的方程;
(Ⅱ)设过点
的直线
与曲线
相交于不同的两点
,
.若点
在
轴上,且
,求点
的纵坐标的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com