精英家教网 > 高中数学 > 题目详情
给定两个长度为1的平面向量
OA 
OB 
,它们的夹角θ=60°,如图所示,点C在以O为圆心的圆弧
AB
上变动.若
OC
=x
OA
+y
OB
,其中x,y∈R,则x+y的最大值是
4
3
3
4
3
3
分析:本题是向量的坐标表示的应用,结合图形,利用三角函数的性质,即可求出结果.
解答:解:建立如图所示的坐标系,则B(1,0),A(cos60°,sin60°),即A(
1
2
3
2


设∠BOC=α,则
OC
=(cosα,sinα)
OC
=x
OA
+y
OB
=(
1
2
x+y,
3
2
x)
cosα=
1
2
x+y
sinα=
3
2
x

∴x=2cosα-
4
3
sinα,y=
2
3
sinα
∴x+y=2cosα+
2
3
sinα=
4
3
3
sin(α+60°)
∵0°≤α≤60°,∴60°≤α+60°≤120°
3
2
≤sin(α-60°)≤1,
∴x+y有最大值
4
3
3
,当α=30°时取最大值.
故答案为
4
3
3
点评:本题考查向量知识的运用,考查三角函数的性质,确定x,y的关系式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网给定两个长度为1的平面向量
OA
OB
,它们的夹角为120°.如图所示,点C在以O为圆心,以1半径的圆弧AB上变动.若
OC
=x
OA
+y
OB
,其中x,y∈R,则x+y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网给定两个长度为1的平面向量
OA
OB
,它们的夹角为90°,如图所示,点C在以O为圆心的圆弧AB上运动,若
CO
=x
OA
+y
OB
,其中x,y∈R,则x+y的最大值是(  )
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网给定两个长度为1的平面向量
OA
OB
,它们的夹角为120°.如图所示,点C在以O为圆心的圆弧AB上变动.若
OC
=x
OA
+y
OB
,其中x,y∈R.
(1)若∠AOC=30°,求x,y的值;
(2)求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定两个长度为1的平面向量
OA
OB
,它们的夹角为120°.
(1)求|
OA
+
OB
|;
(2)如图所示,点C在以O为圆心的圆弧
AB
上变动.若
OC
=x
OA
+y
OB
,其中x,y∈R,求x+y的最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网 如图,给定两个长度为1的平面向量
OA
OB
,它们的夹角为
3
,点C是以O为圆心的圆弧
AB
上的一个动点,且
OC
=x
OA
+y
OB
(x,y∈
.
R-

(Ⅰ)设∠AOC=θ,写出x,y关于θ的函数解析式并求定义域;
(Ⅱ)求x+y的取值范围.

查看答案和解析>>

同步练习册答案