【题目】已知两个分类变量X和Y,由他们的观测数据计算得到K2的观测值范围是3.841<k<6.635,据K2的临界值表,则以下判断正确的是( )
![]()
P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A.在犯错误概率不超过0.05的前提下,认为变量X与Y有关系
B.在犯错误概率不超过0.05的前提下,认为变量X与Y没有关系
C.在犯错误概率不超过0.01的前提下,认为变量X与Y有关系
D.在犯错误概率不超过0.01的前提下,认为变量X与Y没有关系
科目:高中数学 来源: 题型:
【题目】BMI指数(身体质量指数,英文为BodyMassIndex,简称BMI)是衡量人体胖瘦程度的一个标准,BMI=体重(kg)/身高(m)的平方.根据中国肥胖问题工作组标准,当BMI≥28时为肥胖.某地区随机调查了1200名35岁以上成人的身体健康状况,其中有200名高血压患者,被调查者的频率分布直方图如下:
![]()
(1)求被调查者中肥胖人群的BMI平均值
;
(2)填写下面列联表,并判断是否有99.9%的把握认为35岁以上成人患高血压与肥胖有关.
| 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
肥胖 | 不肥胖 | 合计 | |
高血压 | |||
非高血压 | |||
合计 |
附:
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线E的参数方程为
(
为参数),以O为极点,x轴非负半轴为极轴建立极坐标系,直线
,
的极坐标方程分别为
,
,
交曲线E于点A,B,
交曲线E于点C,D.
(1)求曲线E的普通方程及极坐标方程;
(2)求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在党中央的正确领导下,通过全国人民的齐心协力,特别是全体一线医护人员的奋力救治,二月份“新冠肺炎”疫情得到了控制.甲、乙两个地区采取防护措施后,统计了从2月7日到2月13日一周的新增“新冠肺炎”确诊人数,绘制成如下折线图:
![]()
(1)根据图中甲、乙两个地区折线图的信息,写出你认为最重要的两个统计结论;
(2)治疗“新冠肺炎”药品的研发成了当务之急,某药企计划对甲地区的
项目或乙地区的
项目投入研发资金,经过评估,对于
项目,每投资十万元,一年后利润是l.38万元、1.18万元、l.14万元的概率分别为
、
、
;对于
项目,利润与产品价格的调整有关,已知
项目产品价格在一年内进行2次独立的调整,每次价格调整中,产品价格下调的概率都是
,记
项目一年内产品价格的下调次数为
,每投资十万元,
取0、1、2时,一年后相应利润是1.4万元、1.25万元、0.6万元.记对
项目投资十万元,一年后利润的随机变量为
,记对
项目投资十万元,一年后利润的随机变量为
.
(i)求
,
的概率分布列和数学期望
,
;
(ii)如果你是投资决策者,将做出怎样的决策?请写出决策理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,以原点
为圆心,椭圆
的长半轴为半径的圆与直线
相切.
(1)求椭圆
的标准方程;
(2)已知点
,
为动直线
与椭圆
的两个交点,问:在
轴上是否存在点
,使
为定值?若存在,试求出点
的坐标和定值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.而今年出现在湖北武汉的新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等,在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.医院为筛查冠状病毒,需要检验血液是否为阳性,现有
份血液样本,有以下两种检验方式:
方式一:逐份检验,则需要检验
次.
方式二:混合检验,将其中
(
且
)份血液样本分别取样混合在一起检验.
若检验结果为阴性,这
份的血液全为阴性,因而这
份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这
份血液究竟哪几份为阳性,就要对这
份再逐份检验,此时这
份血液的检验次数总共为
.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为
.
(1)现有
份血液样本,其中只有
份样本为阳性,若采用逐份检验方式,求恰好经
次检验就能把阳性样本全部检验出来的概率.
(2)现取其中
(
且
)份血液样本,记采用逐份检验方式,样本需要检验的总次数为
,采用混合检验方式,样本需要检验的总次为
.
(i)若
,试求
关于
的函数关系式
;
(ii)若
,且采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求
的最大值.
参考数据:
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线
的焦点为
,准线为
,
为抛物线
过焦点
的弦,已知以
为直径的圆与
相切于点
.
(1)求
的值及圆的方程;
(2)设
为
上任意一点,过点
作
的切线,切点为
,证明:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com