精英家教网 > 高中数学 > 题目详情

设椭圆M:数学公式+数学公式=1(a>b>0)的离心率为数学公式,点A(0,a),B(-b,0),原点O到直线AB的距离为数学公式,P是椭圆的右顶点,直线l:x=my-n与椭圆M相交于C,D两点,且数学公式数学公式
(Ⅰ)求椭圆M的方程;
(Ⅱ)求证:直线l的横截距n为定值.

解:(Ⅰ)由e2===1-=,得a=b
由点A(0,a),B(-b,0)知直线AB的方程为+=1,即lAB:4x-3y+4b=0
又原点O到直线AB的距离=b=,∴b=3,

∴b2=9,a2=16
从而椭圆M的方程为:+=1.
(Ⅱ)易知P(3,0),设C(x1,y1),(x2,y2),将x=my+n代入+=1化简整理得
(16m2+9)y2+32mny+16n2-144=0
则y1+y2=,y1y2=
=0?(x1-3,y1)•(x2-3,y2)=0即(x1-3)•(x2-3)+y1y2=0
又x1=my1+nn,x2=my2+nn
∴(my1+n-3)•(my2+n-3)+y1y2=0,
整理得(m2+1)y1y2+m(n-3)(y1+y2)+(n-3)2=0
即(m2+1)×+m(n-3)×+(n-3)2=0
易知n≠3,∴16(m2+1)(n+3)-32m2n+(16m2+9)(n-3)=0
展开得25n+21=0?n=-
∴直线l的横截距n为定值


分析:(Ⅰ)由e2===1-=,得a=b,由点A(0,a),B(-b,0)知直线AB的方程为+=1,再由点O到直线AB的距离=b=,知b=3,由此能够得到椭圆M的方程.
(Ⅱ)P(3,0),设C(x1,y1),(x2,y2),将x=my+n代入+=1,得(16m2+9)y2+32mny+16n2-144=0,则y1+y2=,y1y2=.由=0,知(x1-3)•(x2-3)+y1y2=0,由x1=my1+nn,x2=my2+nn,知(my1+n-3)•(my2+n-3)+y1y2=0,由此能够证明直线l的横截距n为定值.
点评:本题考查椭圆方程的求法和直线l的横截距n为定值的证明,解题时要注意椭圆性质的灵活运用和合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1,(a>b>0)
的左右焦点分别为F1,F2,离心率e=
2
2
,点F2到右准线为l的距离为
2

(Ⅰ)求a,b的值;
(Ⅱ)设M,N是l上的两个动点,
F1M
F2N
=0

证明:当|MN|取最小值时,
F1F2
+
F2M
+
F2N
=
0

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的长半轴的长等于焦距,且x=4为它的右准线.
(I)求椭圆的方程;
(II)过定点M(m,0)(-2<m<2,m≠0为常数)作斜率为k(k≠0)的直线l与椭圆交于不同的两点A.B,问在x轴上是否存在一点N,使直线NA与NB的倾斜角互补?若存在,求出N点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年辽宁省抚顺三中高考数学二模试卷(理科)(解析版) 题型:解答题

设椭圆M:+=1(a>b>0)的离心率为,点A(a,0),B(0,-b),原点O到直线AB的距离为
(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l:y=2x+m与椭圆M相交于C、D不同两点,经过线段CD上点E的直线与y轴相交于点P,且有=0,||=||,试求△PCD面积S的最大值.

查看答案和解析>>

科目:高中数学 来源:2011年四川省眉山市高考数学二模试卷(理科)(解析版) 题型:解答题

设椭圆M:+=1(a>b>0)的离心率为,点A(0,a),B(-b,0),原点O到直线AB的距离为,P是椭圆的右顶点,直线l:x=my-n与椭圆M相交于C,D两点,且
(Ⅰ)求椭圆M的方程;
(Ⅱ)求证:直线l的横截距n为定值.

查看答案和解析>>

同步练习册答案