精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x+2|﹣|x﹣2|+m(m∈R).
(Ⅰ)若m=1,求不等式f(x)≥0的解集;
(Ⅱ)若方程f(x)=x有三个实根,求实数m的取值范围.

【答案】解:(Ⅰ)∵m=1时,f(x)=|x+2|﹣|x﹣2|+1. ∴当x≤﹣2时,f(x)=﹣3,不可能非负;
当﹣2<x<2时,f(x)=2x+1,由f(x)≥0可解得 ,于是
当x≥2时,f(x)=5>0恒成立.
所以不等式f(x)≥0的解集为
(Ⅱ)由方程f(x)=x可变形为m=x+|x﹣2|﹣|x+2|.

作出图象如图所示.
于是由题意可得﹣2<m<2.

【解析】(Ⅰ)分x≤﹣2,﹣2<x<2,x≥2三种情况求解;(Ⅱ)由方程f(x)=x可变形为m=x+|x﹣2|﹣|x+2|.令 作出图象如图所示.根据图象求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂生产某种产品的产量x(吨)与相应的生产成本y(万元)有如下几组样本数据:

x

3

4

5

6

y

2.5

3.1

3.9

4.5

据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得到其回归直线的斜率为0.8,则当该产品的生产成本是6.7万元时,其相应的产量约是(
A.8
B.8.5
C.9
D.9.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集为[﹣3,3].
(Ⅰ)解不等式:f(x)+f(x+2)>0;
(Ⅱ)若a,b,c均为正实数,且满足a+b+c=m,求证: ≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD是函数y=ax2图象的一部分,对边OA上一点M在区域OABD内作一次函数y=kx+b(k>0)的图象,与线段DB交于点N(点N不与点D重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN为绿化风景区:
(1)求证:b=﹣
(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,AB∥DC,AD=AB=BC=1, ,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=1,点M在线段EF上.
(1)当 为何值时,AM∥平面BDF?证明你的结论;
(2)求二面角B﹣EF﹣D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正态变量ξ服从正态分布N(μ,σ2),则ξ在区间(μ﹣σ,μ+σ),(μ﹣2σ,μ+2σ),(μ﹣3σ,μ+3σ)内取值的概率分别是0.6826,0.9544,0.9973.已知某大型企业为10000名员工定制工作服,设员工的身高(单位:cm)服从正态分布N(172,52),则适宜身高在177~182cm范围内员工穿的服装大约要定制套.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=4sinxcosx,x∈R的图象,只要把函数y=sin2x﹣ cos2x,x∈R图象上所有的点(
A.向左平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向右平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙两个班级进行数学考试,按照大于等于120分为优秀,120分以下为非优秀统计成绩后,得到如下2×2列联表:(单位:人).

优秀

非优秀

总计

甲班

10

乙班

30

总计

105

已知在全部105人中随机抽取1人成绩是优秀的概率为
(1)请完成上面的2 x×2列联表,并根据表中数据判断,是否有95%的把握认为“成绩与班级有关系”?
(2)若甲班优秀学生中有男生6名,女生4名,现从中随机选派3名学生参加全市数学竞赛,记参加竞赛的男生人数为X,求X的分布列与期望. 附:K2=

P(K2≥k)

0.15

0.10

0.05

0.010

k

2.072

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将三颗骰子各掷一次,设事件A=“三个点数都不相同”,B=“至少出现一个6点”,则概率P(A|B)等于(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案