精英家教网 > 高中数学 > 题目详情
已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
3
,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆相切.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求动点M的轨迹C2的方程;
(Ⅲ)过椭圆C1的焦点F2作直线l与曲线C2交于A、B两点,当l的斜率为
1
2
时,直线l1上是否存在点M,使AM⊥BM?若存在,求出M的坐标,若不存在,说明理由.
(Ⅰ)∵e=
3
3

e2=
c2
a2
=
a2-b2
a2
=
1
3

∴2a2=3b2
∵直线l:x-y+2=0与圆x2+y2=b2相切,
2
2
=b
b=
2
b2=2

∴a2=3.
∴椭圆C1的方程是
x2
3
+
y2
2
=1

(Ⅱ)由(Ⅰ)知F1(-1,0),F2(1,0),所以l1:x=-1,设M(x,y),
∵|MP|=|MF2|,
|x-(-1)|=
(x-1)2+y2
化简得:y2=4x,
∴点M的轨迹C2的方程为y2=4x.
(Ⅲ)∵直线l的方程为x-2y-1=0,代入y2=4x,得y2-8y-4=0.
由韦达定理得y1+y2=8,y1y2=-4,设A(
y21
4
y1),B(
y22
4
y2)

设直线l1:x=-1上存在点M(-1,m),使得AM⊥BM,则
AM
BM
=0

(-1-
y21
4
,m-y1)•(-1-
y22
4
,m-y2)=0

∴16m2-16m(y1+y2)+4(y12+y22)+y12y22+16y1y2+16=0,
∴m2-8m+16=0,解得m=4,
∴准线上存在点M(-1,4),使AM⊥BM.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长为4,离心率为
1
2
,F1,F2分别为其左右焦点.一动圆过点F2,且与直线x=-1相切.
(Ⅰ) (ⅰ)求椭圆C1的方程;
(ⅱ)求动圆圆心轨迹C的方程;
(Ⅱ)在曲线C上有四个不同的点M,N,P,Q,满足
MF2
NF2
共线,
PF2
QF2
共线,且
PF2
MF2
=0
,求四边形PMQN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
3
,直线l:x-y+
5
=0与椭圆C1相切.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直与椭圆的长轴,动直线l2垂直于直线l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(3)若A(x1,2),B(x2,y2),C(x0,y0)是C2上不同的点,且AB⊥BC,求实数y0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,右顶点为A,P是椭圆C1上任意一点,设该双曲线C2:以椭圆C1的焦点为顶点,顶点为焦点,B是双曲线C2在第一象限内的任意一点,且c=
a2-b2

(1)设
PF1
PF2
的最大值为2c2,求椭圆离心率;
(2)若椭圆离心率e=
1
2
时,是否存在λ,总有∠BAF1=λ∠BF1A成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)与双曲线C2:x2-
y2
4
=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则(  )
A、a2=
13
2
B、a2=3
C、b2=
1
2
D、b2=2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点与抛物线C2:y2=4x的焦点F重合,椭圆C1与抛物线C2在第一象限的交点为P,|PF|=
5
3

(1)求椭圆C1的方程;
(2)过点A(-1,0)的直线与椭圆C1相交于M、N两点,求使
FM
+
FN
=
FR
成立的动点R的轨迹方程.

查看答案和解析>>

同步练习册答案