【题目】必修四第一章我们借助圆的对称性学习了诱导公式,如
在直观上讲单位圆中,当两个角的终边关于
轴对称时,这两个角的正弦值相等;再如
在单位圆中,当两个角的终边关于原点中心对称时,这两个角的正弦值互为相反数.观察这些诱导公式,可以发现它们都是特殊角与任意角
的三角函数的恒等关系.我们如果将特殊角换为任意角
,那么任意角
与
的和(或差)的三角函数与
,
的三角函数会有什么关系呢?如果已知
,
的正弦余弦,能由此推出
的正弦余弦吗?下面是某高一学生在老师的指导下自行探究
与角![]()
的正弦余弦之间的关系的部分过程,请你顺着这位同学的思路以及老师的提示将探究过程完善,并完成后面的题目.探究过程如下:
不妨令
如图,设单位圆与
轴的正半轴相交于点
以
轴的非负半轴为始边作角
它们的终边分别与单位圆相交于点
连接
若把扇形
绕着点
旋转
角,则点
分别与点
重合. ……(未完待续)
(提示一:任意一个圆绕着其圆心旋转任意角后都与原来的圆重合,这一性质叫做圆的旋转对称性)(提示二:平面上任意两点
间的距离公式
)
![]()
(1)完善上述探究过程;
(2)利用(1)中的结论解决问题:已知![]()
是第三象限角,求
的值.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左.右焦点为
,离心率为
.直线
与
轴,
轴分别交于点
,
是直线
与椭圆
的一个公共点,
是点
关于直线
的对称点,设
.
(1)证明:
;
(2)若
,
的周长为
;写出椭圆
的方程;
(3)确定
的值,使得
是等腰三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(文)(2017·衡水二模)某商场在元旦举行购物抽奖促销活动,规定顾客从装有编号0,1,2,3,4的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的编号之和等于7则中一等奖,等于6或5则中二等奖,等于4则中三等奖,其余结果为不中奖.
(1)求中二等奖的概率.
(2)求不中奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
中,三个内角
,
,
所对的边分别是
,
,
.
(1)证明:
;
(2)在①
,②
,③
这三个条件中任选一个补充在下面问题中,并解答
若
,
,________,求
的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年某市有2万多文科考生参加高考,除去成绩为
分(含
分)以上的3人与成绩为
分(不含
分)以下的3836人,还有约1.9万文科考生的成绩集中在
内,其成绩的频率分布如下表所示:
分数段 |
|
|
|
|
频率 | 0.108 | 0.133 | 0.161 | 0.183 |
分数段 |
|
|
|
|
频率 | 0.193 | 0.154 | 0.061 | 0.007 |
(Ⅰ)试估计该次高考成绩在
内文科考生的平均分(精确到
);
(Ⅱ)一考生填报志愿后,得知另外有4名同分数考生也填报了该志愿.若该志愿计划录取3人,并在同分数考生中随机录取,求该考生不被该志愿录取的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1盒该产品获利润30元,未售出的产品,每盒亏损10元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了160盒该产品,以
(单位:盒,
)表示这个开学季内的市场需求量,
(单位:元)表示这个开学季内经销该产品的利润.
![]()
(1)根据直方图估计这个开学季内市场需求量
的平均数;
(2)将
表示为
的函数;
(3)根据直方图估计利润
不少于4000元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有以下四种变换方式:
向左平移
个单位长度,再把所得各点的横坐标缩短到原来的
倍
纵坐标不变
;
向左平移
个单位长度,再把所得各点的横坐标缩短到原来的
倍
纵坐标不变
;
把各点的横坐标缩短到原来的
倍
纵坐标不变
,再向左平移
个单位长度;
把各点的横坐标缩短到原来的
倍
纵坐标不变
,再向左平移
个单位长度;
其中能将函数
的图象变为函数
的图象的是
![]()
A.
和
B.
和
C.
和
D.
和![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,坐标原点为
.椭圆
的动弦
过右焦点
且不垂直于坐标轴,
的中点为
,过
且垂直于线段
的直线交射线
于点![]()
(I)证明:点
在直线
上;
(Ⅱ)当四边形
是平行四边形时,求
的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com