精英家教网 > 高中数学 > 题目详情
已知f(x)=x-1,g(x)=-x2+(3m+1)x-2m(m+1),满足下面两个条件:
①对任意实数x,有f(x)<0或g(x)<0;
②存在x∈(-∞,-2),满足f(x)•g(x)<0.
则实数m的取值范围为( )
A.(-∞,-1)
B.(1,+∞)
C.(-1,1)
D.(-2,0)
【答案】分析:当x≥1时,f(x)=x-1<0不成立,所以要求当x≥1时g(x)<0;只需g(x)max<0求得结果记为A;当x∈(-∞,-2)时,f(x)<0.需要存在x∈(-∞,-2),使g(x)>0.只需g(x)max>0,求得结果记为B,则最后结果为A∩B
解答:解:当x≥1时,f(x)=x-1<0不成立,所以要求当x≥1时g(x)<0;,所以
得满足条件①m<0
当x∈(-∞,-2)时,f(x)<0.需要存在x∈(-∞,-2),使g(x)>0.
(1)≤m≤-1
(2)得m<
所以满足②的m范围为≤m≤-1或m<,即m≤-1
综上所述,m范围为(-∞,0)∩((-∞,-1)=(-∞,-1)
故选A
点评:本题考查不等式恒成立,函数最值的应用,考查逻辑思维能力,推理运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(
x
-1)=-x
,则函数f(x)的表达式为(  )
A、f(x)=x2+2x+1(x≥0)
B、f(x)=x2+2x+1(x≥-1)
C、f(x)=-x2-2x-1(x≥0)
D、f(x)=-x2-2x-1(x≥-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若k=
1
3
,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间[
1
2
,a]
上的值域为[
1
a
,1]
,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x
1
2
+x-
1
2
)=x+x-1-2
,则 f(x+1)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x
+
1
x
+
x+
1
x
+1
g(x)=
x
+
1
x
-
x+
1
x
+1

(1)分别求f(x)、g(x)的定义域,并求f(x)•g(x)的值;(2)求f(x)的最小值并说明理由;
(3)若a=
x2+x+1
 , b=t
x
 , c=x+1
,是否存在满足下列条件的正数t,使得对于任意的正
数x,a、b、c都可以成为某个三角形三边的长?若存在,则求出t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(20)(解析版) 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间上的值域为,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案