【题目】在平面直角坐标系
中,已知定点A(1,0),点M在
轴上运动,点N在
轴上运动,点P为坐标平面内的动点,且满足
.
(1)求动点P的轨迹C的方程;
(2)点Q为圆
上一点,由Q向C引切线,切点分别为S、T,记
分别为切线QS,QT的斜率,当Q运动时,求
的取值范围.
【答案】(1)y2=4x(2)![]()
【解析】
(1)设N(0,b)M(a,0),P(x,y),将条件中的向量关系坐标化,然后进行整理,得到动点P的轨迹C的方程;(2)设切线方程为:y-y0=k(x-x0),与抛物线联立,得到
,关于
的方程,得到
,然后将所求的
转化到
和
,根据
的范围,求出其取值范围.
(1) 设N(0,b)M(a,0),P(x,y).
因为![]()
所以
,即![]()
因为![]()
所以![]()
所以x=-a,y=2b,
所以y2=4x
(2)设Q(x,y),x∈[-3,-1]
由题意知:切线斜率存在,设为k
切线方程为:y-y0=k(x-x0),
联立
,化简得:ky2-4y+4y0-4kx0=0
△=16-16k(y-kx0)=0
![]()
![]()
∴
将
代入得
,![]()
∴
.
∴
的取值范围是![]()
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是菱形,点
在线段PC上,且三棱锥
的体积是四棱锥
的体积的
,
,
平面
.
![]()
(1)若
是
的中点,证明:直线
∥平面
;
(2)求二面角
的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地随着经济的发展,居民收入逐年增长该地一建设银行统计连续五年的储蓄存款(年底余额)得到下表:
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
为便于计算,工作人员将上表的数据进行了处理(令![]()
),得到下表:
时间t | 1 | 2 | 3 | 4 | 5 |
储蓄存款z | 0 | 1 | 2 | 3 | 5 |
(1)求z关于t的线性回归方程;
(2)通过(1)中的方程,求出y关于x的回归方程;
(3)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
附:线性回归方程
,其中
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某年级100名学生期中考试数学成绩(单位:分)的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].
![]()
(1)求图中a的值,并根据频率分布直方图估计这100名学生数学成绩的平均分;
(2)从[70,80)和[80,90)分数段内采用分层抽样的方法抽取5名学生,求在这两个分数段各抽取的人数;
(3)现从第(2)问中抽取的5名同学中任选2名参加某项公益活动,求选出的两名同学均来自[70,80)分数段内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00~10:00各自的点击量,得到如图所示的茎叶图,根据茎叶图回答下列问题.
![]()
(1)甲、乙两个网站点击量的极差分别是多少?
(2)甲网站点击量在[10,40]间的频率是多少?
(3)甲、乙两网站哪个更受欢迎?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
及圆
.
(1)若直线
过点
且与圆心
的距离为1,求直线
的方程;
(2)设过点
的直线
与圆
交于
两点,当
时,求以线段
为直径的圆
的方程;
(3)设直线
与圆
交于
两点,是否存在实数
,使得过点
的直线
垂直平分弦
?若存在,求出实数
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】班级新年晚会设置抽奖环节.不透明纸箱中有大小相同的红球3个,黄球2个,且这5个球外别标有数字1、2、3、4、5.有如下两种方案可供选择:
方案一:一次性抽取两球,若颜色相同,则获得奖品;
方案二:依次有放回地抽取两球,若数字之和大于5,则获得奖品.
(1)写出按方案一抽奖的试验的所有基本事件;
(2)哪种方案获得奖品的可能性更大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P-ABCD中,ABCD为梯形,AB//CD,BC⊥AB,AB=2
,BC=
,CD=PC=
。
![]()
(I)点E在线段PB上,满足CE//平面PAD,求
的值。
(II)已知AC与BD的交点为M,若PM=1,且平面PAC⊥平面ABCD,求二面角P-BC-M平面角的余弦值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com