【题目】已知函数f(x)=
.
(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.
(2)求该函数在区间[1,4]上的最大值与最小值.
【答案】
(1)解:任取x1,x2∈[1,+∞),且x1<x2,
f(x1)﹣f(x2)=
=
,
∵x1﹣x2<0,(x1+1)(x2+1)>0,
所以f(x1)﹣f(x2)<0,即f(x1)<f(x2),
所以函数f(x)在[1,+∞)上是增函数
(2)解:由(1)知函数f(x)在[1,4]上是增函数,
∴最大值f(4)=
,最小值f(1)= ![]()
【解析】(1)根据增函数的定义进行判断和证明;(2)利用(1)的结论,利用函数的单调性.
【考点精析】关于本题考查的函数的值域和函数单调性的判断方法,需要了解求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的;单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax+(k﹣1)a﹣x(a>且a≠1)是定义域为R的奇函数.
(1)求k值;
(2)若f(1)>0,试判断函数单调性,并求使不等式f(x2+x)+f(t﹣2x)>0恒成立的t的取值范围;
(3)若f(1)=
,设g(x)=a2x+a﹣2x﹣2mf(x),g(x)在[1,+∞)上的最小值为﹣1,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂家拟在2017年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)
(单位:万件)与年促销费用
(单位:万元)(
)满足
(
为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2017年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).
(1)将2017年该产品的利润
(单位:万元)表示为年促销费用
(单位:万元)的函数;
(2)该厂家2017年的促销费用投入多少万元时,厂家的利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:
、
、
是同一平面上的三个向量,其中
=(1,2).
(1)若|
|=2
,且
∥
,求
的坐标.
(2)若|
|=
,且
+2
与2
﹣
垂直,求
与
的夹角θ
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
与直线
相切.
(1)若直线
与圆
交于
两点,求
;
(2)设圆
与
轴的负半轴的交点为
,过点
作两条斜率分别为
的直线交圆
于
两点,且
,试证明直线
恒过一定点,并求出该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com