设椭圆的焦点分别为F1(-1,0)、F2(1,0),右准线l交x轴于点A,且
.
(1)求椭圆的方程;
(2)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形DMEN面积的最大值和最小值.
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
2
| ||
| 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 |
| α 2 |
| y 2 |
| α2-1 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年广西桂林市、崇左市、防城港市高考第一次联合模拟理科数学试卷(解析版) 题型:解答题
如图,已知椭圆C:
+
=1(a>b>0)的左、右焦点分别为F
、F
,A是椭圆C上的一点,AF
⊥F
F
,O是坐标原点,OB垂直AF
于B,且OF
=3OB.
![]()
(Ⅰ)求椭圆C的离心率;
(Ⅱ)求t∈(0,b),使得命题“设圆x
+y
=t
上任意点M(x
,y
)处的切线交椭圆C于Q
、Q
两点,那么OQ
⊥OQ
”成立.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省等三校高三2月月考数学理卷 题型:解答题
(本题满分14分)
已知椭圆
的左右焦点为
,抛物线C:
以F2为焦点且与椭圆相交于点M,直线F1M与抛物线C相切。
(Ⅰ)求抛物线C的方程和点M的坐标;
(Ⅱ)过F2作抛物线C的两条互相垂直的弦AB、DE,设弦AB、DE的中点分别为F、N,求证直线FN恒过定点;
查看答案和解析>>
科目:高中数学 来源:2007年普通高等学校招生全国统一考试理科数学卷(江西) 题型:选择题
设椭圆
的离心率为e=
,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)
A.必在圆x2+y2=2内 B.必在圆x2+y2=2上
C.必在圆x2+y2=2外 D.以上三种情形都有可能
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com