精英家教网 > 高中数学 > 题目详情
(2013•松江区二模)一质地均匀的正方体三个面标有数字0,另外三个面标有数字1.将此正方体连续抛掷两次,若用随机变量ξ表示两次抛掷后向上面所标有的数字之积,则数学期望Eξ=
1
4
1
4
分析:由题意可知两次抛掷后向上面所标有的数字有以下四种类型:(0,0),(0,1),(1,0),(1,1),可得ξ的取值为0,1.抛掷一次后出现数字1为事件A,出现数字0为事件B.由古典概型可得p(A)=P(B)=
1
2
.由于ξ=1当且仅当两次抛掷后向上面所标有的数字都为1,故可求得P(ξ=1),再利用对立事件的概率计算公式可得P(ξ=0),进而得到数学期望Eξ.
解答:解:由题意可知两次抛掷后向上面所标有的数字有以下四种类型:(0,0),(0,1),(1,0),(1,1),因此ξ的取值为0,1.
设抛掷一次后出现数字1为事件A,出现数字0为事件B.
由古典概型可得p(A)=P(B)=
1
2

ξ=1当且仅当两次抛掷后向上面所标有的数字都为1,故P(ξ=1)=
1
2
×
1
2
=
1
4

∴P(ξ=0)=1-P(ξ=0)=1-
1
4
=
3
4

故随机变量ξ的分布列为:
故Eξ=
3
4
+1×
1
4
=
1
4

故答案为
1
4
点评:知道两次抛掷后向上面所标有的数字分为四种类型,正确理解古典概型的概率计算公式、相互独立事件的概率计算公式、对立事件的概率计算公式、数学期望的计算公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•松江区二模)若正整数n使得行列式
.
   1        n  
 2-n     3n 
.
=6
,则
P
n
7
=
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知函数f(x)=x
13
,x∈(1,27)
的值域为A,集合B={x|x2-2x<0,x∈R},则A∩B=
(1,2)
(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知α∈(-
π
2
,0)
,且cosα=
4
5
,则sin2α=
-
24
25
-
24
25

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知圆锥的母线长为5,侧面积为15π,则此圆锥的体积为
12π
12π
(结果保留π).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知x=-3-2i(i为虚数单位)是一元二次方程x2+ax+b=0(a,b均为实数)的一个根,则a+b=
19
19

查看答案和解析>>

同步练习册答案