【题目】已知函数
,若将f(x)的图象向左平移
个单位后所得函数的图象关于原点对称,则φ=( )
A.![]()
B.![]()
C.![]()
D.![]()
【答案】B
【解析】解:∵函数
, ∴sinφ=﹣sin(ω
+φ),∴ω=4k+2,k∈Z.
将f(x)=sin(ωx+φ)的图象向左平移
个单位后所得函数的解析式为y=sin(ωx+
+φ)的图象关于原点对称,
∴
+φ=lπ,l∈Z,∵φ∈(0,
)∴k=2,ω=10,此时,φ=
,
故选:B.
【考点精析】通过灵活运用函数y=Asin(ωx+φ)的图象变换,掌握图象上所有点向左(右)平移
个单位长度,得到函数
的图象;再将函数
的图象上所有点的横坐标伸长(缩短)到原来的
倍(纵坐标不变),得到函数
的图象;再将函数
的图象上所有点的纵坐标伸长(缩短)到原来的
倍(横坐标不变),得到函数
的图象即可以解答此题.
科目:高中数学 来源: 题型:
【题目】在△ABC中,设边a,b,c所对的角分别为A,B,C,且a>c.已知△ABC的面积为
,
,b=3.
(Ⅰ)求a,c的值;
(Ⅱ)求sin(B﹣C)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-5:不等式选讲]
设函数f(x)=|x+
|+|x﹣2m|(m>0).
(Ⅰ)求证:f(x)≥8恒成立;
(Ⅱ)求使得不等式f(1)>10成立的实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C:
﹣
=1(a>0,b>0)的左焦点为F,第二象限的点M在双曲线C的渐近线上,且|OM|=a,若直线MF的斜率为
,则双曲线C的渐近线方程为( )
A.y=±x
B.y=±2x
C.y=±3x
D.y=±4x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,设椭圆
=1(a>b>0)的左、右焦点分别为F1 , F2 , 右顶点为A,上顶点为B,离心率为e.椭圆上一点C满足:C在x轴上方,且CF1⊥x轴.![]()
(1)若OC∥AB,求e的值;
(2)连结CF2并延长交椭圆于另一点D若
≤e≤
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形,E是BC的中点. ![]()
(1)求证:AE∥平面PCD;
(2)记平面PAB与平面PCD的交线为l,求二面角C﹣l﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三棱锥P﹣ABC中,底面△ABC满足BA=BC,
,P在面ABC的射影为AC的中点,且该三棱锥的体积为
,当其外接球的表面积最小时,P到面ABC的距离为( )
A.2
B.3
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P(x,y)是曲线C上任意一点,点(x,2y)在圆x2+y2=8上,定点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),直线l与曲线C交于A、B两个不同点.
(1)求曲线C的方程;
(2)求证直线MA、MB与x轴始终围成一个等腰三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com