精英家教网 > 高中数学 > 题目详情

【题目】已知平行四边形ABCD的三个顶点的坐标为A(﹣1,5),B(﹣2,﹣1),C(2,3).

(1)求平行四边形ABCD的顶点D的坐标;
(2)在△ACD中,求CD边上的高所在直线方程;
(3)求四边形ABCD的面积.

【答案】
(1)解:解法一:设D(x,y),

∵A(﹣1,5),B(﹣2,﹣1),C(2,3),

∴(﹣1,﹣6)=(2﹣x,3﹣y),

∴x=3,y=9,即D(3,9).

解法二:∵A(﹣1,5),B(﹣2,﹣1),C(2,3),

∴AC中点为

该点也为BD中点,设D(x,y),

则可得D(3,9)


(2)解:∵A(﹣1,5),B(﹣2,﹣1),C(2,3),

∴CD边的斜率kCD= =6,

∴CD边上的高的斜率为

∴CD边上的高所在的直线方程为y﹣5=﹣ (x+1),即x+6y﹣29=0


(3)解:解法一:∵B(﹣2,﹣1),C(2,3).

∴直线BC: = ,即x﹣y+1=0,

∴A到BC的距离为d=

又BC= =4

∴四边形ABCD的面积为

解法二:∵

∴由余弦定理得

∴四边形ABCD的面积为


【解析】(1)可以利用平行四边形的一组对边平行,借助向量求得点D的坐标;也可以利用平行四边形的两条对角线互相平分,借助中点坐标公式求得点D的坐标;(2)利用两条互相垂直的直线的斜率积为-1,由直线CD的斜率求得其边上高的斜率,又过点A,进而求得CD边上的高所在的直线方程;(3)可以利用一边与其边上的高求得平行四边形的面积,也可以利用:一条对角线将三角形分为两个面积相等的三角形,来求平行四边形的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线及点.

1)证明直线过某定点,并求该定点的坐标;

(2)当点到直线的距离最大时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个袋中装有大小相同的4个红球,3个白球,3个黄球.若任意取出2个球,则取出的2个球颜色相同的概率是;若有放回地任意取10次,每次取出一个球,每取到一个红球得2分,取到其它球不得分,则得分数X的方差为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x,y满足条件 ,若目标函数z=ax+by(a>0,b>0)的最大值为12,则 的最小值为(
A.
B.
C.
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(1,2),B(﹣3,﹣1),若圆x2+y2=r2(r>0)上恰有两点M,N,使得△MAB和△NAB的面积均为5,则r的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,B(0,2),C(1,0),斜率为 的直线l过点A,且l和以C为圆心的圆相切.
(1)求圆C的方程;
(2)在圆C上是否存在点P,使得 ,若存在,求出所有的点P的坐标;若不存在说明理由;
(3)若不过C的直线m与圆C交于M,N两点,且满足CM,MN,CN的斜率依次为等比数列,求直线m的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆 + =1(a>b>0)与双曲线 ﹣y2=1有相同的焦点F1 , F2 , 抛物线x2=2py(p>0)的焦点为F,且与椭圆在第一象限的交点为M,若|MF1|+|MF2|=2

(1)求椭圆的方程;
(2)若|MF|= ,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中有“今有五人分无钱,令上二人所得与下三人等,问各得几何?”.其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”这个问题中,甲所得为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数集具有性质:对任意的 ,,使得成立.

Ⅰ)分别判断数集是否具有性质,并说明理由;

Ⅱ)求证;

Ⅲ)若,求数集中所有元素的和的最小值.

查看答案和解析>>

同步练习册答案