精英家教网 > 高中数学 > 题目详情

将两块大小相同的含30º角的直角三角板(∠BAC=∠B1A1C=30º)按图①的方式放置,固定三角板A1B1C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90º)至图②所示的位置ABA1C交于点EACA1B1于点FABA1B1交于点O

(1)求证:△BCE≌△B1CF.


(2)当旋转角等于30º时,ABA1B1垂直吗?请说明理由.

(1)证明:在△和△中,

,∠

∴ △≌△

(2)解:当∠时,.理由如下:

∵ ∠,∴ ∠

∴ ∠

∴ ∠

∵ ∠,∴ ∠

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格小钢板的块数如下表所示:
类    型 A规格 B规格 C规格
第一种钢板 1 2 1
第二种钢板 1 1 3
每张钢板的面积,第一种为1m2,第二种为2m2,今需要A、B、C三种规格的成品各12、15、27块,问各截这两种钢板多少张,可得所需三种规格成品,且使所用钢板面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板块数如下表:
A规格 B规格 C规格
第一种钢板 2 1 1
第二种钢板 1 2 3
今需A、B、C三种规格的成品各15、18、27块,所需两种规格的钢板的张数分别为m、n(m、n为整数),则m+n的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•增城市模拟)要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:

      规格类型

钢板类型

A

B

C
第一种钢板    2     1      1
第二种钢板    1     2      3
今需要A,B,C三种规格的成品分别为15、18、27块,要使所用钢板张数最少,第一、第二种钢板的张数各是
3,9或4,8
3,9或4,8

查看答案和解析>>

科目:高中数学 来源: 题型:

要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:
规格类型 A规格 B规格 C规格
钢板类型
第一种钢板 2 1 1
第二种钢板 1 2 3
今需A、B、C三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少?

查看答案和解析>>

同步练习册答案