【题目】如图,在四棱锥
中,底面
是菱形,
,
为等边三角形,
是线段
上的一点,且
平面
.
![]()
(1)求证:
为
的中点;
(2)若
为
的中点,连接
,
,
,
,平面
平面
,
,求三棱锥
的体积.
科目:高中数学 来源: 题型:
【题目】我市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄(单位:岁)分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.
![]()
(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(2)请根据频率分布直方图,估计这100名志愿者样本的平均数;
(3)在(1)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.(参考数据:
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
且
.
当
时,函数
恒有意义,求实数
的取值范围;
是否存在这样的实数
,使得函数
在区间
上为减函数,并且最大值为1?如果存在,试求出
的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线
:
,曲线
:
.以极点为坐标原点,极轴为
轴正半轴建立直角坐标系
,曲线
的参数方程为
(
为参数).
(1)求
,
的直角坐标方程;
(2)
与
,
交于不同四点,这四点在
上的排列顺次为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4m和am(0<a<12),不考虑树的粗细.现用16m长的篱笆,借助墙角围成一个矩形花圃ABCD.设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位m2)的图象大致是( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面中两条直线
和
相交于点O,对于平面上任意一点M,若x,y分别是M到直线
和
的距离,则称有序非负实数对(x,y)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列三个命题:
![]()
①若p=q=0,则“距离坐标”为(0,0)的点有且只有1个;
②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且只有2个;
③若pq≠0则“距离坐标”为(p,q)的点有且只有4个.
上述命题中,正确命题的是______.(写出所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)在
中,内角
,
,
的对边分别为
,
,
,且
,证明:
;
(2)已知结论:在直角三角形中,若两直角边长分别为
,
,斜边长为
,则斜边上的高
.若把该结论推广到空间:在侧棱互相垂直的四面体
中,若三个侧面的面积分别为
,
,
,底面面积为
,则该四面体的高
与
,
,
,
之间的关系是什么?(用
,
,
,
表示
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个三位自然数
的百位,十位,个位上的数字依次为
,当且仅当
且
时称为“凹数”.若
,且
互不相同,任取一个三位数
,则它为“凹数”的概率是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com