精英家教网 > 高中数学 > 题目详情
记[x]为不超过实数x的最大整数,例如,[2]=2,[1.5]=1,[-0.3]=-1.设a为正整数,数列{xn}满足x1=a,,现有下列命题:
①当a=5时,数列{xn}的前3项依次为5,3,2;
②对数列{xn}都存在正整数k,当n≥k时总有xn=xk
③当n≥1时,
④对某个正整数k,若xk+1≥xk,则
其中的真命题有    .(写出所有真命题的编号)
【答案】分析:按照给出的定义对四个命题结合数列的知识逐一进行判断真假,①列举即可;②需举反例;③可用数学归纳法加以证明;④可由归纳推理判断其正误
解答:解:①当a=5时,x1=5,


∴①正确.
②当a=8时,x1=8,




∴此数列从第三项开始为3,2,3,2,3,2…为摆动数列,故②错误;
③当n=1时,x1=a,∵a-()=>0,∴x1=a>成立,
假设n=k时,
则n=k+1时,


∴对任意正整数n,当n≥1时,;③正确;
④∵≥xk
由数列①②规律可知一定成立
故正确答案为①③④
点评:本题主要考查了数列递推公式的应用,归纳推理和演绎推理的方法,直接证明和间接证明方法,数学归纳法的应用,难度较大,需有较强的推理和思维能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•四川)记[x]为不超过实数x的最大整数,例如,[2]=2,[1.5]=1,[-0.3]=-1.设a为正整数,数列{xn}满足x1=a,xn+1=[
xn+[
a
xn
]
2
](n∈N*)
,现有下列命题:
①当a=5时,数列{xn}的前3项依次为5,3,2;
②对数列{xn}都存在正整数k,当n≥k时总有xn=xk
③当n≥1时,xn
a
-1

④对某个正整数k,若xk+1≥xk,则xk=[
a
]

其中的真命题有
①③④
①③④
.(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省达州市万源三中高考数学模拟试卷3(理科)(解析版) 题型:填空题

记[x]为不超过实数x的最大整数,例如,[2]=2,[1.5]=1,[-0.3]=-1.设a为正整数,数列{xn}满足x1=a,,现有下列命题:
①当a=5时,数列{xn}的前3项依次为5,3,2;
②对数列{xn}都存在正整数k,当n≥k时总有xn=xk
③当n≥1时,
④对某个正整数k,若xk+1≥xk,则
其中的真命题有    .(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省遂宁市射洪中学高三零诊数学试卷(理科)(解析版) 题型:填空题

记[x]为不超过实数x的最大整数,例如,[2]=2,[1.5]=1,[-0.3]=-1.设a为正整数,数列{xn}满足x1=a,,现有下列命题:
①当a=5时,数列{xn}的前3项依次为5,3,2;
②对数列{xn}都存在正整数k,当n≥k时总有xn=xk
③当n≥1时,
④对某个正整数k,若xk+1≥xk,则
其中的真命题有    .(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源:2012年四川省高考数学试卷(理科)(解析版) 题型:解答题

记[x]为不超过实数x的最大整数,例如,[2]=2,[1.5]=1,[-0.3]=-1.设a为正整数,数列{xn}满足x1=a,,现有下列命题:
①当a=5时,数列{xn}的前3项依次为5,3,2;
②对数列{xn}都存在正整数k,当n≥k时总有xn=xk
③当n≥1时,
④对某个正整数k,若xk+1≥xk,则
其中的真命题有    .(写出所有真命题的编号)

查看答案和解析>>

同步练习册答案