【题目】【2018届江西省南昌市高三第一轮】已知
分别为
三个内角
的对边,且
.
(Ⅰ)求
;
(Ⅱ)若
为
边上的中线,
,
,求
的面积.
![]()
【答案】(Ⅰ)
(Ⅱ)![]()
【解析】试题分析: (1)由正弦定理化简已知的式子,由内角和定理、诱导公式、两角和差的正弦公式化简后,由内角的范围和特殊角的三角函数值求出A;(2)由题意和平方关系求出sinB,由内角和定理、诱导公式、两角和的正弦公式求出sinC,由正弦定理求出a和c关系,根据题意和余弦定理列出方程,代入数据求出a、c,由三角形的面积公式求出答案.
解析:
(Ⅰ)∵
,由正弦定理得:
,即
,化简得:
,∴
.在
中,
,∴
,得
.
(Ⅱ)在
中,
,得
,
则
,由正弦定理得
.
设
,在
中,由余弦定理得:
,
则
,解得
,即
,
故
.
点睛: 本题考查了正弦定理、余弦定理,三角形的面积公式,以及两角和差的正弦公式等,注意内角的范围,考查化简、变形、计算能力.注意当已知三角形的一个边和两个角时,用正弦定理.已知两角一对边时,用正弦定理,已知两边和对角时用正弦较多.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
(其中e是自然对数的底数,常数a>0).
(1)当a=1时,求曲线在(0,f(0))处的切线方程;
(2)若存在实数x∈(a,2],使得不等式f(x)≤e2成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,离心率
,过
且与
轴垂直的直线与椭圆
在第一象限内的交点为
,且
.
(1)求椭圆
的方程;
(2)过点
的直线
交椭圆
于
两点,当
时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点O,左焦点为F1(-1,0)的椭圆C的左顶点为A,上顶点为B,F1到直线AB的距离为
|OB|.
(1)求椭圆C的方程;
![]()
(2)如图,若椭圆
,椭圆
,则称椭圆C2是椭圆C1的λ倍相似椭圆.已知C2是椭圆C的3倍相似椭圆,若椭圆C的任意一条切线l交椭圆C2于两点M、N,试求弦长|MN|的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x+1)e-x(e为自然对数的底数).
(1)求函数f(x)的单调区间;
(2)设函数φ(x)=xf(x)+tf′(x)+e-x,存在实数x1,x2∈[0,1],使得2φ(x1)<φ(x2)成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长方体
中,
,
,点
,
,
分别为
,
,
的中点,过点
的平面
与平面
平行,且与长方体的面相交,交线围成一个几何图形.
![]()
(1)在图中画出这个几何图形(说明画法,不需要说明理由);
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把2支相同的晨光签字笔,3支相同英雄钢笔全部分给4名优秀学生,每名学生至少1支,则不同的分法有( )
A. 24种 B. 28种 C. 32种 D. 36种
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com